Rocstar  1.0
Rocstar multiphysics simulation application
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
inks/I_DFT.cpp
Go to the documentation of this file.
1 /* *****************************************************************
2  MESQUITE -- The Mesh Quality Improvement Toolkit
3 
4  Copyright 2004 Sandia Corporation and Argonne National
5  Laboratory. Under the terms of Contract DE-AC04-94AL85000
6  with Sandia Corporation, the U.S. Government retains certain
7  rights in this software.
8 
9  This library is free software; you can redistribute it and/or
10  modify it under the terms of the GNU Lesser General Public
11  License as published by the Free Software Foundation; either
12  version 2.1 of the License, or (at your option) any later version.
13 
14  This library is distributed in the hope that it will be useful,
15  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  Lesser General Public License for more details.
18 
19  You should have received a copy of the GNU Lesser General Public License
20  (lgpl.txt) along with this library; if not, write to the Free Software
21  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 
23  diachin2@llnl.gov, djmelan@sandia.gov, mbrewer@sandia.gov,
24  pknupp@sandia.gov, tleurent@mcs.anl.gov, tmunson@mcs.anl.gov
25 
26  ***************************************************************** */
36 #include "I_DFT.hpp"
37 #include "I_DFTFamilyFunctions.hpp"
38 #include "TargetMatrix.hpp"
39 
40 using namespace Mesquite;
41 
42 
44  MsqMeshEntity* e,
45  double& m,
46  MsqError &err)
47 {
48  // Only works with the weighted average
49 
50  MsqError mErr;
51  MsqVertex *vertices = pd.get_vertex_array(err); MSQ_ERRZERO(err);
52 
53  EntityTopology topo = e->get_element_type();
54 
55  const size_t nv = e->vertex_count();
56  const size_t *v_i = e->get_vertex_index_array();
57 
58  size_t idx = pd.get_element_index(e);
59  const TargetMatrix *W = pd.targetMatrices.get_element_corner_tags(&pd, idx, err );
60  MSQ_ERRZERO(err);
61 
62  // Initialize constants for the metric
63  const double delta = useBarrierDelta ? pd.get_barrier_delta(err) :
64  (mGamma ? 0 : 1);
65  MSQ_ERRZERO(err);
66 
67  const int tetInd[4][4] = {{0, 1, 2, 3}, {1, 2, 0, 3},
68  {2, 0, 1, 3}, {3, 2, 1, 0}};
69  const int hexInd[8][4] = {{0, 1, 3, 4}, {1, 2, 0, 5},
70  {2, 3, 1, 6}, {3, 0, 2, 7},
71  {4, 7, 5, 0}, {5, 4, 6, 1},
72  {6, 5, 7, 2}, {7, 6, 4, 3}};
73 
74  // Variables used for computing the metric
75  double mMetric; // Metric value
76  bool mValid; // Validity of the metric
77  int i, j;
78 
79  m = 0.0;
80  switch(topo) {
81  case TRIANGLE:
82  assert(3 == nv);
83 
84  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
85 
86  for (i = 0; i < 3; ++i) {
87  for (j = 0; j < 3; ++j) {
88  mCoords[j] = vertices[v_i[tetInd[i][j]]];
89  }
90 
92 
93  QR(mQ, mR, W[i]);
94  inv(invR, mR);
95  mValid = m_gdft_2(mMetric, mCoords, mNormals[i], invR, mQ,
96  mAlpha, mGamma, delta, mBeta);
97  if (!mValid) return false;
98  m += W[i].get_cK() * mMetric;
99 
100  }
101 
102  m *= MSQ_ONE_THIRD;
103  break;
104 
105  case QUADRILATERAL:
106  assert(4 == nv);
107 
108  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
109 
110  for (i = 0; i < 4; ++i) {
111  for (j = 0; j < 3; ++j) {
112  mCoords[j] = vertices[v_i[hexInd[i][j]]];
113  }
114 
115  QR(mQ, mR, W[i]);
116  inv(invR, mR);
117  mValid = m_gdft_2(mMetric, mCoords, mNormals[i], invR, mQ,
118  mAlpha, mGamma, delta, mBeta);
119  if (!mValid) return false;
120  m += W[i].get_cK() * mMetric;
121  }
122 
123  m *= 0.25;
124  break;
125 
126  case TETRAHEDRON:
127  assert(4 == nv);
128 
129  for (i = 0; i < 4; ++i) {
130  for (j = 0; j < 4; ++j) {
131  mCoords[j] = vertices[v_i[tetInd[i][j]]];
132  }
133 
134  QR(mQ, mR, W[i]);
135  inv(invR, mR);
136  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
137  mAlpha, mGamma, delta, mBeta);
138 
139  if (!mValid) return false;
140  m += W[i].get_cK() * mMetric;
141  }
142 
143  m *= 0.25;
144  break;
145 
146  case HEXAHEDRON:
147  assert(8 == nv);
148 
149  for (i = 0; i < 8; ++i) {
150  for (j = 0; j < 4; ++j) {
151  mCoords[j] = vertices[v_i[hexInd[i][j]]];
152  }
153 
154  QR(mQ, mR, W[i]);
155  inv(invR, mR);
156  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
157  mAlpha, mGamma, delta, mBeta);
158 
159  if (!mValid) return false;
160  m += W[i].get_cK() * mMetric;
161  }
162 
163  m *= 0.125;
164  break;
165 
166  default:
167  MSQ_SETERR(err)("element type not implemented.",MsqError::NOT_IMPLEMENTED);
168  return false;
169  }
170 
171  return true;
172 }
173 
175  MsqMeshEntity *e,
176  MsqVertex *fv[],
177  Vector3D g[],
178  int nfv,
179  double &m,
180  MsqError &err)
181 {
182  // Only works with the weighted average
183 
184  MsqVertex *vertices = pd.get_vertex_array(err); MSQ_ERRZERO(err);
185  EntityTopology topo = e->get_element_type();
186 
187  const size_t nv = e->vertex_count();
188  const size_t *v_i = e->get_vertex_index_array();
189 
190  size_t idx = pd.get_element_index(e);
191  const TargetMatrix *W = pd.targetMatrices.get_element_corner_tags(&pd, idx, err );
192  MSQ_ERRZERO(err);
193 
194  // Initialize constants for the metric
195  const double delta = useBarrierDelta ? pd.get_barrier_delta(err) :
196  (mGamma ? 0 : 1);
197  //const double delta = useBarrierDelta ? pd.get_barrier_delta(err) : 0;
198  MSQ_ERRZERO(err);
199 
200  const int tetInd[4][4] = {{0, 1, 2, 3}, {1, 2, 0, 3},
201  {2, 0, 1, 3}, {3, 2, 1, 0}};
202  const int hexInd[8][4] = {{0, 1, 3, 4}, {1, 2, 0, 5},
203  {2, 3, 1, 6}, {3, 0, 2, 7},
204  {4, 7, 5, 0}, {5, 4, 6, 1},
205  {6, 5, 7, 2}, {7, 6, 4, 3}};
206 
207  // Variables used for computing the metric
208  double mMetric; // Metric value
209  bool mValid; // Validity of the metric
210  int i, j, mVert;
211 
212  m = 0.0;
213  switch(topo) {
214  case TRIANGLE:
215  assert(3 == nv);
216 
217  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
218 
219  // The following analytic calculation only works correctly if the
220  // normal is constant. If the normal is not constant, you need
221  // to get the gradient of the normal with respect to the vertex
222  // positions to obtain the correct values.
223 
224  if (1 == nfv) {
225  // One free vertex; use the specialized code for computing the gradient.
226 
227  g[0] = 0.0;
228  for (i = 0; i < 3; ++i) {
229  mVert = -1;
230  for (j = 0; j < 3; ++j) {
231  mCoords[j] = vertices[v_i[tetInd[i][j]]];
232  if (vertices + v_i[tetInd[i][j]] == fv[0]) {
233  mVert = j;
234  }
235  }
236 
237  if (mVert >= 0) {
239 
240  QR(mQ, mR, W[i]);
241  inv(invR, mR);
242 
243  switch(mVert) {
244  case 0:
245  mValid = g_gdft_2_v0(mMetric, mGrads[0], mCoords, mNormals[i],
246  invR, mQ, mAlpha, mGamma, delta, mBeta);
247  break;
248 
249  case 1:
250  mValid = g_gdft_2_v1(mMetric, mGrads[0], mCoords, mNormals[i],
251  invR, mQ, mAlpha, mGamma, delta, mBeta);
252  break;
253 
254  default:
255  mValid = g_gdft_2_v2(mMetric, mGrads[0], mCoords, mNormals[i],
256  invR, mQ, mAlpha, mGamma, delta, mBeta);
257  break;
258  }
259 
260  if (!mValid) return false;
261  m += W[i].get_cK() * mMetric;
262  g[0] += W[i].get_cK() * mGrads[0];
263  }
264  else {
265  // For triangles, the free vertex must appear in every element.
266  // Therefore, there these accumulations should not get used.
267 
269 
270  QR(mQ, mR, W[i]);
271  inv(invR, mR);
272 
273  mValid = m_gdft_2(mMetric, mCoords, mNormals[i],
274  invR, mQ, mAlpha, mGamma, delta, mBeta);
275  if (!mValid) return false;
276  m += W[i].get_cK() * mMetric;
277  }
278  }
279 
280  m *= MSQ_ONE_THIRD;
281  g[0] *= MSQ_ONE_THIRD;
282  }
283  else {
284  for (i = 0; i < 3; ++i) {
285  mAccGrads[i] = 0.0;
286  }
287 
288  for (i = 0; i < 3; ++i) {
289  for (j = 0; j < 3; ++j) {
290  mCoords[j] = vertices[v_i[tetInd[i][j]]];
291  }
292 
294 
295  QR(mQ, mR, W[i]);
296  inv(invR, mR);
297  mValid = g_gdft_2(mMetric, mGrads, mCoords, mNormals[i], invR, mQ,
298  mAlpha, mGamma, delta, mBeta);
299 
300  if (!mValid) return false;
301  m += W[i].get_cK() * mMetric;
302  for (j = 0; j < 3; ++j) {
303  mAccGrads[tetInd[i][j]] += W[i].get_cK() * mGrads[j];
304  }
305  }
306 
307  m *= MSQ_ONE_THIRD;
308  for (i = 0; i < 3; ++i) {
310  }
311 
312  // This is not very efficient, but is one way to select correct
313  // gradients. For gradients, info is returned only for free
314  // vertices, in the order of fv[].
315 
316  for (i = 0; i < 3; ++i) {
317  for (j = 0; j < nfv; ++j) {
318  if (vertices + v_i[i] == fv[j]) {
319  g[j] = mAccGrads[i];
320  }
321  }
322  }
323  }
324  break;
325 
326  case QUADRILATERAL:
327  assert(4 == nv);
328 
329  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
330 
331  // The following analytic calculation only works correctly if the
332  // normal is constant. If the normal is not constant, you need
333  // to get the gradient of the normal with respect to the vertex
334  // positions to obtain the correct values.
335 
336  if (1 == nfv) {
337  // One free vertex; use the specialized code for computing the gradient.
338 
339  g[0] = 0.0;
340  for (i = 0; i < 4; ++i) {
341  mVert = -1;
342  for (j = 0; j < 3; ++j) {
343  mCoords[j] = vertices[v_i[hexInd[i][j]]];
344  if (vertices + v_i[hexInd[i][j]] == fv[0]) {
345  mVert = j;
346  }
347  }
348 
349  if (mVert >= 0) {
350  QR(mQ, mR, W[i]);
351  inv(invR, mR);
352 
353  switch(mVert) {
354  case 0:
355  mValid = g_gdft_2_v0(mMetric, mGrads[0], mCoords, mNormals[i],
356  invR, mQ, mAlpha, mGamma, delta, mBeta);
357  break;
358 
359  case 1:
360  mValid = g_gdft_2_v1(mMetric, mGrads[0], mCoords, mNormals[i],
361  invR, mQ, mAlpha, mGamma, delta, mBeta);
362  break;
363 
364  default:
365  mValid = g_gdft_2_v2(mMetric, mGrads[0], mCoords, mNormals[i],
366  invR, mQ, mAlpha, mGamma, delta, mBeta);
367  break;
368  }
369 
370  if (!mValid) return false;
371  m += W[i].get_cK() * mMetric;
372  g[0] += W[i].get_cK() * mGrads[0];
373  }
374  else {
375  // For quadrilaterals, the free vertex only appears in three
376  // elements. Therefore, there these accumulations are needed
377  // to get the true local objective function. Note: this code
378  // can be commented out for local codes to improve performance
379  // because you are unable to change the contributions from the
380  // elements where the free vertex does not appear. (If the
381  // weight matrices change, then the code needs to be modified.)
382 
383  QR(mQ, mR, W[i]);
384  inv(invR, mR);
385 
386  mValid = m_gdft_2(mMetric, mCoords, mNormals[i],
387  invR, mQ, mAlpha, mGamma, delta, mBeta);
388  if (!mValid) return false;
389  m += W[i].get_cK() * mMetric;
390  }
391  }
392 
393  m *= 0.25;
394  g[0] *= 0.25;
395  }
396  else {
397  for (i = 0; i < 4; ++i) {
398  mAccGrads[i] = 0.0;
399  }
400 
401  for (i = 0; i < 4; ++i) {
402  for (j = 0; j < 3; ++j) {
403  mCoords[j] = vertices[v_i[hexInd[i][j]]];
404  }
405 
406  QR(mQ, mR, W[i]);
407  inv(invR, mR);
408  mValid = g_gdft_2(mMetric, mGrads, mCoords, mNormals[i], invR, mQ,
409  mAlpha, mGamma, delta, mBeta);
410 
411  if (!mValid) return false;
412  m += W[i].get_cK() * mMetric;
413  for (j = 0; j < 3; ++j) {
414  mAccGrads[hexInd[i][j]] += W[i].get_cK() * mGrads[j];
415  }
416  }
417 
418  m *= 0.25;
419  for (i = 0; i < 4; ++i) {
420  mAccGrads[i] *= 0.25;
421  }
422 
423  // This is not very efficient, but is one way to select correct gradients
424  // For gradients, info is returned only for free vertices, in the order
425  // of fv[].
426 
427  for (i = 0; i < 4; ++i) {
428  for (j = 0; j < nfv; ++j) {
429  if (vertices + v_i[i] == fv[j]) {
430  g[j] = mAccGrads[i];
431  }
432  }
433  }
434  }
435  break;
436 
437  case TETRAHEDRON:
438  assert(4 == nv);
439 
440  if (1 == nfv) {
441  // One free vertex; use the specialized code for computing the gradient.
442 
443  g[0] = 0.0;
444  for (i = 0; i < 4; ++i) {
445  mVert = -1;
446  for (j = 0; j < 4; ++j) {
447  mCoords[j] = vertices[v_i[tetInd[i][j]]];
448  if (vertices + v_i[tetInd[i][j]] == fv[0]) {
449  mVert = j;
450  }
451  }
452 
453  if (mVert >= 0) {
454  QR(mQ, mR, W[i]);
455  inv(invR, mR);
456 
457  switch(mVert) {
458  case 0:
459  mValid = g_gdft_3_v0(mMetric, mGrads[0], mCoords, invR, mQ,
460  mAlpha, mGamma, delta, mBeta);
461  break;
462 
463  case 1:
464  mValid = g_gdft_3_v1(mMetric, mGrads[0], mCoords, invR, mQ,
465  mAlpha, mGamma, delta, mBeta);
466  break;
467 
468  case 2:
469  mValid = g_gdft_3_v2(mMetric, mGrads[0], mCoords, invR, mQ,
470  mAlpha, mGamma, delta, mBeta);
471  break;
472 
473  default:
474  mValid = g_gdft_3_v3(mMetric, mGrads[0], mCoords, invR, mQ,
475  mAlpha, mGamma, delta, mBeta);
476  break;
477  }
478 
479  if (!mValid) return false;
480  m += W[i].get_cK() * mMetric;
481  g[0] += W[i].get_cK() * mGrads[0];
482  }
483  else {
484  // For tetrahedrons, the free vertex must appear in every element.
485  // Therefore, there these accumulations should not get used.
486 
487  QR(mQ, mR, W[i]);
488  inv(invR, mR);
489  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
490  mAlpha, mGamma, delta, mBeta);
491  if (!mValid) return false;
492  m += W[i].get_cK() * mMetric;
493  }
494  }
495 
496  m *= 0.25;
497  g[0] *= 0.25;
498  }
499  else {
500  for (i = 0; i < 4; ++i) {
501  mAccGrads[i] = 0.0;
502  }
503 
504  for (i = 0; i < 4; ++i) {
505  for (j = 0; j < 4; ++j) {
506  mCoords[j] = vertices[v_i[tetInd[i][j]]];
507  }
508 
509  QR(mQ, mR, W[i]);
510  inv(invR, mR);
511  mValid = g_gdft_3(mMetric, mGrads, mCoords, invR, mQ,
512  mAlpha, mGamma, delta, mBeta);
513 
514  if (!mValid) return false;
515  m += W[i].get_cK() * mMetric;
516 
517  for (j = 0; j < 4; ++j) {
518  mAccGrads[tetInd[i][j]] += W[i].get_cK() * mGrads[j];
519  }
520  }
521 
522  m *= 0.25;
523  for (i = 0; i < 4; ++i) {
524  mAccGrads[i] *= 0.25;
525  }
526 
527  // This is not very efficient, but is one way to select correct
528  // gradients. For gradients, info is returned only for free vertices,
529  // in the order of fv[].
530 
531  for (i = 0; i < 4; ++i) {
532  for (j = 0; j < nfv; ++j) {
533  if (vertices + v_i[i] == fv[j]) {
534  g[j] = mAccGrads[i];
535  }
536  }
537  }
538  }
539  break;
540 
541  case HEXAHEDRON:
542  assert(8 == nv);
543 
544  if (1 == nfv) {
545  // One free vertex; use the specialized code for computing the gradient.
546 
547  g[0] = 0.0;
548  for (i = 0; i < 8; ++i) {
549  mVert = -1;
550  for (j = 0; j < 4; ++j) {
551  mCoords[j] = vertices[v_i[hexInd[i][j]]];
552  if (vertices + v_i[hexInd[i][j]] == fv[0]) {
553  mVert = j;
554  }
555  }
556 
557  if (mVert >= 0) {
558  QR(mQ, mR, W[i]);
559  inv(invR, mR);
560 
561  switch(mVert) {
562  case 0:
563  mValid = g_gdft_3_v0(mMetric, mGrads[0], mCoords, invR, mQ,
564  mAlpha, mGamma, delta, mBeta);
565  break;
566 
567  case 1:
568  mValid = g_gdft_3_v1(mMetric, mGrads[0], mCoords, invR, mQ,
569  mAlpha, mGamma, delta, mBeta);
570  break;
571 
572  case 2:
573  mValid = g_gdft_3_v2(mMetric, mGrads[0], mCoords, invR, mQ,
574  mAlpha, mGamma, delta, mBeta);
575  break;
576 
577  default:
578  mValid = g_gdft_3_v3(mMetric, mGrads[0], mCoords, invR, mQ,
579  mAlpha, mGamma, delta, mBeta);
580  break;
581  }
582 
583  if (!mValid) return false;
584  m += W[i].get_cK() * mMetric;
585  g[0] += W[i].get_cK() * mGrads[0];
586  }
587  else {
588  // For hexahedrons, the free vertex only appears in four elements.
589  // Therefore, there these accumulations are needed to get the
590  // true local objective function. Note: this code can be commented
591  // out for local codes to improve performance because you are
592  // unable to change the contributions from the elements where the
593  // free vertex does not appear. (If the weight matrices change,
594  // then the code needs to be modified.)
595 
596  QR(mQ, mR, W[i]);
597  inv(invR, mR);
598  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
599  mAlpha, mGamma, delta, mBeta);
600  if (!mValid) return false;
601  m += W[i].get_cK() * mMetric;
602  }
603  }
604 
605  m *= 0.125;
606  g[0] *= 0.125;
607  }
608  else {
609  for (i = 0; i < 8; ++i) {
610  mAccGrads[i] = 0.0;
611  }
612 
613  for (i = 0; i < 8; ++i) {
614  for (j = 0; j < 4; ++j) {
615  mCoords[j] = vertices[v_i[hexInd[i][j]]];
616  }
617 
618  QR(mQ, mR, W[i]);
619  inv(invR, mR);
620  mValid = g_gdft_3(mMetric, mGrads, mCoords, invR, mQ,
621  mAlpha, mGamma, delta, mBeta);
622 
623  if (!mValid) return false;
624  m += W[i].get_cK() * mMetric;
625 
626  for (j = 0; j < 4; ++j) {
627  mAccGrads[hexInd[i][j]] += W[i].get_cK() * mGrads[j];
628  }
629  }
630 
631  m *= 0.125;
632  for (i = 0; i < 8; ++i) {
633  mAccGrads[i] *= 0.125;
634  }
635 
636  // This is not very efficient, but is one way to select correct
637  // gradients. For gradients, info is returned only for free
638  // vertices, in the order of fv[].
639 
640  for (i = 0; i < 8; ++i) {
641  for (j = 0; j < nfv; ++j) {
642  if (vertices + v_i[i] == fv[j]) {
643  g[j] = mAccGrads[i];
644  }
645  }
646  }
647  }
648  break;
649 
650  default:
651  MSQ_SETERR(err)("element type not implemented.",MsqError::NOT_IMPLEMENTED);
652  return false;
653  }
654 
655  return true;
656 }
657 
659  MsqMeshEntity *e,
660  MsqVertex *fv[],
661  Vector3D g[],
662  Matrix3D h[],
663  int nfv,
664  double &m,
665  MsqError &err)
666 {
667  // Only works with the weighted average
668 
669  MsqVertex *vertices = pd.get_vertex_array(err); MSQ_ERRZERO(err);
670  EntityTopology topo = e->get_element_type();
671 
672  const size_t nv = e->vertex_count();
673  const size_t *v_i = e->get_vertex_index_array();
674 
675  size_t idx = pd.get_element_index(e);
676  const TargetMatrix *W = pd.targetMatrices.get_element_corner_tags(&pd, idx, err );
677  MSQ_ERRZERO(err);
678 
679  // Initialize constants for the metric
680  const double delta = useBarrierDelta ? pd.get_barrier_delta(err) :
681  (mGamma ? 0 : 1);
682  //const double delta = useBarrierDelta ? pd.get_barrier_delta(err) : 0;
683  MSQ_ERRZERO(err);
684 
685  const int tetInd[4][4] = {{0, 1, 2, 3}, {1, 2, 0, 3},
686  {2, 0, 1, 3}, {3, 2, 1, 0}};
687  const int hexInd[8][4] = {{0, 1, 3, 4}, {1, 2, 0, 5},
688  {2, 3, 1, 6}, {3, 0, 2, 7},
689  {4, 7, 5, 0}, {5, 4, 6, 1},
690  {6, 5, 7, 2}, {7, 6, 4, 3}};
691 
692  // Variables used for computing the metric
693  double mMetric; // Metric value
694  bool mValid; // Validity of the metric
695  int i, j, k, l, mVert;
696  int row, col, loc;
697 
698  m = 0.0;
699  switch(topo) {
700  case TRIANGLE:
701  assert(3 == nv);
702  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
703 
704  // The following analytic calculation only works correctly if the
705  // normal is constant. If the normal is not constant, you need
706  // to get the gradient of the normal with respect to the vertex
707  // positions to obtain the correct values.
708 
709  // Zero out the hessian and gradient vector
710  for (i = 0; i < 3; ++i) {
711  g[i] = 0.0;
712  }
713 
714  for (i = 0; i < 6; ++i) {
715  h[i].zero();
716  }
717 
718  if (1 == nfv) {
719  // One free vertex; use the specialized code for computing the
720  // gradient and Hessian.
721 
722  Vector3D mG;
723  Matrix3D mH;
724 
725  mG = 0.0;
726  mH.zero();
727 
728  for (i = 0; i < 3; ++i) {
729  mVert = -1;
730  for (j = 0; j < 3; ++j) {
731  mCoords[j] = vertices[v_i[tetInd[i][j]]];
732  if (vertices + v_i[tetInd[i][j]] == fv[0]) {
733  mVert = j;
734  }
735  }
736 
737  if (mVert >= 0) {
739 
740  QR(mQ, mR, W[i]);
741  inv(invR, mR);
742 
743  switch(mVert) {
744  case 0:
745  mValid = h_gdft_2_v0(mMetric, mGrads[0], mHessians[0],
746  mCoords, mNormals[i],
747  invR, mQ, mAlpha, mGamma, delta, mBeta);
748  break;
749 
750  case 1:
751  mValid = h_gdft_2_v1(mMetric, mGrads[0], mHessians[0],
752  mCoords, mNormals[i],
753  invR, mQ, mAlpha, mGamma, delta, mBeta);
754  break;
755 
756  default:
757  mValid = h_gdft_2_v2(mMetric, mGrads[0], mHessians[0],
758  mCoords, mNormals[i],
759  invR, mQ, mAlpha, mGamma, delta, mBeta);
760  break;
761  }
762 
763  if (!mValid) return false;
764  m += W[i].get_cK() * mMetric;
765  mG += W[i].get_cK() * mGrads[0];
766  mH += W[i].get_cK() * mHessians[0];
767  }
768  else {
769  // For triangles, the free vertex must appear in every element.
770  // Therefore, there these accumulations should not get used.
771 
773 
774  QR(mQ, mR, W[i]);
775  inv(invR, mR);
776 
777  mValid = m_gdft_2(mMetric, mCoords, mNormals[i],
778  invR, mQ, mAlpha, mGamma, delta, mBeta);
779  if (!mValid) return false;
780  m += W[i].get_cK() * mMetric;
781  }
782  }
783 
784  m *= MSQ_ONE_THIRD;
785  mG *= MSQ_ONE_THIRD;
786  mH *= MSQ_ONE_THIRD;
787 
788  for (i = 0; i < 3; ++i) {
789  if (vertices + v_i[i] == fv[0]) {
790  // free vertex, see next
791  g[i] = mG;
792  switch(i) {
793  case 0:
794  h[0] = mH;
795  break;
796 
797  case 1:
798  h[3] = mH;
799  break;
800 
801  default:
802  h[5] = mH;
803  break;
804  }
805  break;
806  }
807  }
808  }
809  else {
810  // Compute the metric and sum them together
811  for (i = 0; i < 3; ++i) {
812  for (j = 0; j < 3; ++j) {
813  mCoords[j] = vertices[v_i[tetInd[i][j]]];
814  }
815 
817 
818  QR(mQ, mR, W[i]);
819  inv(invR, mR);
820  mValid = h_gdft_2(mMetric, mGrads, mHessians, mCoords, mNormals[i],
821  invR, mQ, mAlpha, mGamma, delta, mBeta);
822 
823  if (!mValid) return false;
824  m += W[i].get_cK() * mMetric;
825 
826  for (j = 0; j < 3; ++j) {
827  g[tetInd[i][j]] += W[i].get_cK() * mGrads[j];
828  }
829 
830  l = 0;
831  for (j = 0; j < 3; ++j) {
832  for (k = j; k < 3; ++k) {
833  row = tetInd[i][j];
834  col = tetInd[i][k];
835 
836  if (row <= col) {
837  loc = 3*row - (row*(row+1)/2) + col;
838  h[loc] += W[i].get_cK() * mHessians[l];
839  }
840  else {
841  loc = 3*col - (col*(col+1)/2) + row;
842  h[loc] += W[i].get_cK() * transpose(mHessians[l]);
843  }
844  ++l;
845  }
846  }
847  }
848 
849  m *= MSQ_ONE_THIRD;
850  for (i = 0; i < 3; ++i) {
851  g[i] *= MSQ_ONE_THIRD;
852  }
853 
854  for (i = 0; i < 6; ++i) {
855  h[i] *= MSQ_ONE_THIRD;
856  }
857 
858  // zero out fixed elements of g
859  j = 0;
860  for (i = 0; i < 3; ++i) {
861  if (vertices + v_i[i] == fv[j]) {
862  // if free vertex, see next
863  ++j;
864  }
865  else {
866  // else zero gradient entry and hessian entries.
867  g[i] = 0.;
868 
869  switch(i) {
870  case 0:
871  h[0].zero(); h[1].zero(); h[2].zero();
872  break;
873 
874  case 1:
875  h[1].zero(); h[3].zero(); h[4].zero();
876  break;
877 
878  case 2:
879  h[2].zero(); h[4].zero(); h[5].zero();
880  break;
881  }
882  }
883  }
884  }
885  break;
886 
887  case QUADRILATERAL:
888  assert(4 == nv);
889  e->compute_corner_normals( mNormals, pd, err ); MSQ_ERRZERO(err);
890 
891  // The following analytic calculation only works correctly if the
892  // normal is constant. If the normal is not constant, you need
893  // to get the gradient of the normal with respect to the vertex
894  // positions to obtain the correct values.
895 
896  // Zero out the hessian and gradient vector
897  for (i = 0; i < 4; ++i) {
898  g[i] = 0.0;
899  }
900 
901  for (i = 0; i < 10; ++i) {
902  h[i].zero();
903  }
904 
905  if (1 == nfv) {
906  // One free vertex; use the specialized code for computing the
907  // gradient and Hessian.
908 
909  Vector3D mG;
910  Matrix3D mH;
911 
912  mG = 0.0;
913  mH.zero();
914 
915  for (i = 0; i < 4; ++i) {
916  mVert = -1;
917  for (j = 0; j < 3; ++j) {
918  mCoords[j] = vertices[v_i[hexInd[i][j]]];
919  if (vertices + v_i[hexInd[i][j]] == fv[0]) {
920  mVert = j;
921  }
922  }
923 
924  if (mVert >= 0) {
925 
926  QR(mQ, mR, W[i]);
927  inv(invR, mR);
928 
929  switch(mVert) {
930  case 0:
931  mValid = h_gdft_2_v0(mMetric, mGrads[0], mHessians[0],
932  mCoords, mNormals[i],
933  invR, mQ, mAlpha, mGamma, delta, mBeta);
934  break;
935 
936  case 1:
937  mValid = h_gdft_2_v1(mMetric, mGrads[0], mHessians[0],
938  mCoords, mNormals[i],
939  invR, mQ, mAlpha, mGamma, delta, mBeta);
940  break;
941 
942  default:
943  mValid = h_gdft_2_v2(mMetric, mGrads[0], mHessians[0],
944  mCoords, mNormals[i],
945  invR, mQ, mAlpha, mGamma, delta, mBeta);
946  break;
947  }
948 
949  if (!mValid) return false;
950  m += W[i].get_cK() * mMetric;
951  mG += W[i].get_cK() * mGrads[0];
952  mH += W[i].get_cK() * mHessians[0];
953  }
954  else {
955  // For quadrilaterals, the free vertex only appears in three
956  // elements. Therefore, there these accumulations are needed
957  // to get the true local objective function. Note: this code
958  // can be commented out for local codes to improve performance
959  // because you are unable to change the contributions from the
960  // elements where the free vertex does not appear. (If the
961  // weight matrices change, then the code needs to be modified.)
962 
963  QR(mQ, mR, W[i]);
964  inv(invR, mR);
965 
966  mValid = m_gdft_2(mMetric, mCoords, mNormals[i],
967  invR, mQ, mAlpha, mGamma, delta, mBeta);
968  if (!mValid) return false;
969  m += W[i].get_cK() * mMetric;
970  }
971  }
972 
973  m *= 0.25;
974  mG *= 0.25;
975  mH *= 0.25;
976 
977  for (i = 0; i < 4; ++i) {
978  if (vertices + v_i[i] == fv[0]) {
979  // free vertex, see next
980  g[i] = mG;
981  switch(i) {
982  case 0:
983  h[0] = mH;
984  break;
985 
986  case 1:
987  h[4] = mH;
988  break;
989 
990  case 2:
991  h[7] = mH;
992  break;
993 
994  default:
995  h[9] = mH;
996  break;
997  }
998  break;
999  }
1000  }
1001  }
1002  else {
1003  // Compute the metric and sum them together
1004  for (i = 0; i < 4; ++i) {
1005  for (j = 0; j < 3; ++j) {
1006  mCoords[j] = vertices[v_i[hexInd[i][j]]];
1007  }
1008 
1009  QR(mQ, mR, W[i]);
1010  inv(invR, mR);
1011  mValid = h_gdft_2(mMetric, mGrads, mHessians, mCoords, mNormals[i],
1012  invR, mQ, mAlpha, mGamma, delta, mBeta);
1013 
1014  if (!mValid) return false;
1015  m += W[i].get_cK() * mMetric;
1016 
1017  for (j = 0; j < 3; ++j) {
1018  g[hexInd[i][j]] += W[i].get_cK() * mGrads[j];
1019  }
1020 
1021  l = 0;
1022  for (j = 0; j < 3; ++j) {
1023  for (k = j; k < 3; ++k) {
1024  row = hexInd[i][j];
1025  col = hexInd[i][k];
1026 
1027  if (row <= col) {
1028  loc = 4*row - (row*(row+1)/2) + col;
1029  h[loc] += W[i].get_cK() * mHessians[l];
1030  }
1031  else {
1032  loc = 4*col - (col*(col+1)/2) + row;
1033  h[loc] += W[i].get_cK() * transpose(mHessians[l]);
1034  }
1035  ++l;
1036  }
1037  }
1038  }
1039 
1040  m *= 0.25;
1041  for (i = 0; i < 4; ++i) {
1042  g[i] *= 0.25;
1043  }
1044 
1045  for (i = 0; i < 10; ++i) {
1046  h[i] *= 0.25;
1047  }
1048 
1049  // zero out fixed elements of gradient and Hessian
1050  j = 0;
1051  for (i = 0; i < 4; ++i) {
1052  if (vertices + v_i[i] == fv[j]) {
1053  // if free vertex, see next
1054  ++j;
1055  }
1056  else {
1057  // else zero gradient entry and hessian entries.
1058  g[i] = 0.;
1059 
1060  switch(i) {
1061  case 0:
1062  h[0].zero(); h[1].zero(); h[2].zero(); h[3].zero();
1063  break;
1064 
1065  case 1:
1066  h[1].zero(); h[4].zero(); h[5].zero(); h[6].zero();
1067  break;
1068 
1069  case 2:
1070  h[2].zero(); h[5].zero(); h[7].zero(); h[8].zero();
1071  break;
1072 
1073  case 3:
1074  h[3].zero(); h[6].zero(); h[8].zero(); h[9].zero();
1075  break;
1076  }
1077  }
1078  }
1079  }
1080  break;
1081 
1082  case TETRAHEDRON:
1083  assert(4 == nv);
1084 
1085  // Zero out the hessian and gradient vector
1086  for (i = 0; i < 4; ++i) {
1087  g[i] = 0.0;
1088  }
1089 
1090  for (i = 0; i < 10; ++i) {
1091  h[i].zero();
1092  }
1093 
1094  if (1 == nfv) {
1095  // One free vertex; use the specialized code for computing the
1096  // gradient and Hessian.
1097 
1098  Vector3D mG;
1099  Matrix3D mH;
1100 
1101  mG = 0.0;
1102  mH.zero();
1103 
1104  for (i = 0; i < 4; ++i) {
1105  mVert = -1;
1106  for (j = 0; j < 4; ++j) {
1107  mCoords[j] = vertices[v_i[tetInd[i][j]]];
1108  if (vertices + v_i[tetInd[i][j]] == fv[0]) {
1109  mVert = j;
1110  }
1111  }
1112 
1113  if (mVert >= 0) {
1114  QR(mQ, mR, W[i]);
1115  inv(invR, mR);
1116 
1117  switch(mVert) {
1118  case 0:
1119  mValid = h_gdft_3_v0(mMetric, mGrads[0], mHessians[0],
1120  mCoords, invR, mQ,
1121  mAlpha, mGamma, delta, mBeta);
1122  break;
1123 
1124  case 1:
1125  mValid = h_gdft_3_v1(mMetric, mGrads[0], mHessians[0],
1126  mCoords, invR, mQ,
1127  mAlpha, mGamma, delta, mBeta);
1128  break;
1129 
1130  case 2:
1131  mValid = h_gdft_3_v2(mMetric, mGrads[0], mHessians[0],
1132  mCoords, invR, mQ,
1133  mAlpha, mGamma, delta, mBeta);
1134  break;
1135 
1136  default:
1137  mValid = h_gdft_3_v3(mMetric, mGrads[0], mHessians[0],
1138  mCoords, invR, mQ,
1139  mAlpha, mGamma, delta, mBeta);
1140  break;
1141  }
1142 
1143  if (!mValid) return false;
1144  m += W[i].get_cK() * mMetric;
1145  mG += W[i].get_cK() * mGrads[0];
1146  mH += W[i].get_cK() * mHessians[0];
1147  }
1148  else {
1149  // For tetrahedrons, the free vertex must appear in every element.
1150  // Therefore, there these accumulations should not get used.
1151 
1152  QR(mQ, mR, W[i]);
1153  inv(invR, mR);
1154  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
1155  mAlpha, mGamma, delta, mBeta);
1156  if (!mValid) return false;
1157  m += W[i].get_cK() * mMetric;
1158  }
1159  }
1160 
1161  m *= 0.25;
1162  mG *= 0.25;
1163  mH *= 0.25;
1164 
1165  for (i = 0; i < 4; ++i) {
1166  if (vertices + v_i[i] == fv[0]) {
1167  // free vertex, see next
1168  g[i] = mG;
1169  switch(i) {
1170  case 0:
1171  h[0] = mH;
1172  break;
1173 
1174  case 1:
1175  h[4] = mH;
1176  break;
1177 
1178  case 2:
1179  h[7] = mH;
1180  break;
1181 
1182  default:
1183  h[9] = mH;
1184  break;
1185  }
1186  break;
1187  }
1188  }
1189  }
1190  else {
1191  // Compute the metric and sum them together
1192  for (i = 0; i < 4; ++i) {
1193  for (j = 0; j < 4; ++j) {
1194  mCoords[j] = vertices[v_i[tetInd[i][j]]];
1195  }
1196 
1197  QR(mQ, mR, W[i]);
1198  inv(invR, mR);
1199  mValid = h_gdft_3(mMetric, mGrads, mHessians, mCoords, invR, mQ,
1200  mAlpha, mGamma, delta, mBeta);
1201 
1202  if (!mValid) return false;
1203 
1204  m += W[i].get_cK() * mMetric;
1205 
1206  for (j = 0; j < 4; ++j) {
1207  g[tetInd[i][j]] += W[i].get_cK() * mGrads[j];
1208  }
1209 
1210  l = 0;
1211  for (j = 0; j < 4; ++j) {
1212  for (k = j; k < 4; ++k) {
1213  row = tetInd[i][j];
1214  col = tetInd[i][k];
1215 
1216  if (row <= col) {
1217  loc = 4*row - (row*(row+1)/2) + col;
1218  h[loc] += W[i].get_cK() * mHessians[l];
1219  }
1220  else {
1221  loc = 4*col - (col*(col+1)/2) + row;
1222  h[loc] += W[i].get_cK() * transpose(mHessians[l]);
1223  }
1224  ++l;
1225  }
1226  }
1227  }
1228 
1229  m *= 0.25;
1230  for (i = 0; i < 4; ++i) {
1231  g[i] *= 0.25;
1232  }
1233 
1234  for (i = 0; i < 10; ++i) {
1235  h[i] *= 0.25;
1236  }
1237 
1238  // zero out fixed elements of g
1239  j = 0;
1240  for (i = 0; i < 4; ++i) {
1241  if (vertices + v_i[i] == fv[j]) {
1242  // if free vertex, see next
1243  ++j;
1244  }
1245  else {
1246  // else zero gradient entry and hessian entries.
1247  g[i] = 0.;
1248 
1249  switch(i) {
1250  case 0:
1251  h[0].zero(); h[1].zero(); h[2].zero(); h[3].zero();
1252  break;
1253 
1254  case 1:
1255  h[1].zero(); h[4].zero(); h[5].zero(); h[6].zero();
1256  break;
1257 
1258  case 2:
1259  h[2].zero(); h[5].zero(); h[7].zero(); h[8].zero();
1260  break;
1261 
1262  case 3:
1263  h[3].zero(); h[6].zero(); h[8].zero(); h[9].zero();
1264  break;
1265  }
1266  }
1267  }
1268  }
1269  break;
1270 
1271  case HEXAHEDRON:
1272  assert(8 == nv);
1273 
1274  // Zero out the hessian and gradient vector
1275  for (i = 0; i < 8; ++i) {
1276  g[i] = 0.0;
1277  }
1278 
1279  for (i = 0; i < 36; ++i) {
1280  h[i].zero();
1281  }
1282 
1283  if (1 == nfv) {
1284  // One free vertex; use the specialized code for computing the
1285  // gradient and Hessian.
1286 
1287  Vector3D mG;
1288  Matrix3D mH;
1289 
1290  mG = 0.0;
1291  mH.zero();
1292 
1293  for (i = 0; i < 8; ++i) {
1294  mVert = -1;
1295  for (j = 0; j < 4; ++j) {
1296  mCoords[j] = vertices[v_i[hexInd[i][j]]];
1297  if (vertices + v_i[hexInd[i][j]] == fv[0]) {
1298  mVert = j;
1299  }
1300  }
1301 
1302  if (mVert >= 0) {
1303  QR(mQ, mR, W[i]);
1304  inv(invR, mR);
1305 
1306  switch(mVert) {
1307  case 0:
1308  mValid = h_gdft_3_v0(mMetric, mGrads[0], mHessians[0],
1309  mCoords, invR, mQ,
1310  mAlpha, mGamma, delta, mBeta);
1311  break;
1312 
1313  case 1:
1314  mValid = h_gdft_3_v1(mMetric, mGrads[0], mHessians[0],
1315  mCoords, invR, mQ,
1316  mAlpha, mGamma, delta, mBeta);
1317  break;
1318 
1319  case 2:
1320  mValid = h_gdft_3_v2(mMetric, mGrads[0], mHessians[0],
1321  mCoords, invR, mQ,
1322  mAlpha, mGamma, delta, mBeta);
1323  break;
1324 
1325  default:
1326  mValid = h_gdft_3_v3(mMetric, mGrads[0], mHessians[0],
1327  mCoords, invR, mQ,
1328  mAlpha, mGamma, delta, mBeta);
1329  break;
1330  }
1331 
1332  if (!mValid) return false;
1333  m += W[i].get_cK() * mMetric;
1334  mG += W[i].get_cK() * mGrads[0];
1335  mH += W[i].get_cK() * mHessians[0];
1336  }
1337  else {
1338  // For hexahedrons, the free vertex only appears in four elements.
1339  // Therefore, there these accumulations are needed to get the
1340  // true local objective function. Note: this code can be commented
1341  // out for local codes to improve performance because you are
1342  // unable to change the contributions from the elements where the
1343  // free vertex does not appear. (If the weight matrices change,
1344  // then the code needs to be modified.)
1345 
1346  QR(mQ, mR, W[i]);
1347  inv(invR, mR);
1348  mValid = m_gdft_3(mMetric, mCoords, invR, mQ,
1349  mAlpha, mGamma, delta, mBeta);
1350  if (!mValid) return false;
1351  m += W[i].get_cK() * mMetric;
1352  }
1353  }
1354 
1355  m *= 0.125;
1356  mG *= 0.125;
1357  mH *= 0.125;
1358 
1359  for (i = 0; i < 8; ++i) {
1360  if (vertices + v_i[i] == fv[0]) {
1361  // free vertex, see next
1362  g[i] = mG;
1363  switch(i) {
1364  case 0:
1365  h[0] = mH;
1366  break;
1367 
1368  case 1:
1369  h[8] = mH;
1370  break;
1371 
1372  case 2:
1373  h[15] = mH;
1374  break;
1375 
1376  case 3:
1377  h[21] = mH;
1378  break;
1379 
1380  case 4:
1381  h[26] = mH;
1382  break;
1383 
1384  case 5:
1385  h[30] = mH;
1386  break;
1387 
1388  case 6:
1389  h[33] = mH;
1390  break;
1391 
1392  default:
1393  h[35] = mH;
1394  break;
1395  }
1396  break;
1397  }
1398  }
1399  }
1400  else {
1401  // Compute the metric and sum them together
1402  for (i = 0; i < 8; ++i) {
1403  for (j = 0; j < 4; ++j) {
1404  mCoords[j] = vertices[v_i[hexInd[i][j]]];
1405  }
1406 
1407  QR(mQ, mR, W[i]);
1408  inv(invR, mR);
1409  mValid = h_gdft_3(mMetric, mGrads, mHessians, mCoords, invR, mQ,
1410  mAlpha, mGamma, delta, mBeta);
1411 
1412  if (!mValid) return false;
1413 
1414  m += W[i].get_cK() * mMetric;
1415 
1416  for (j = 0; j < 4; ++j) {
1417  g[hexInd[i][j]] += W[i].get_cK() * mGrads[j];
1418  }
1419 
1420  l = 0;
1421  for (j = 0; j < 4; ++j) {
1422  for (k = j; k < 4; ++k) {
1423  row = hexInd[i][j];
1424  col = hexInd[i][k];
1425 
1426  if (row <= col) {
1427  loc = 8*row - (row*(row+1)/2) + col;
1428  h[loc] += W[i].get_cK() * mHessians[l];
1429  }
1430  else {
1431  loc = 8*col - (col*(col+1)/2) + row;
1432  h[loc] += W[i].get_cK() * transpose(mHessians[l]);
1433  }
1434  ++l;
1435  }
1436  }
1437  }
1438 
1439  m *= 0.125;
1440  for (i = 0; i < 8; ++i) {
1441  g[i] *= 0.125;
1442  }
1443 
1444  for (i = 0; i < 36; ++i) {
1445  h[i] *= 0.125;
1446  }
1447 
1448  // zero out fixed elements of gradient and Hessian
1449  j = 0;
1450  for (i = 0; i < 8; ++i) {
1451  if (vertices + v_i[i] == fv[j]) {
1452  // if free vertex, see next
1453  ++j;
1454  }
1455  else {
1456  // else zero gradient entry and hessian entries.
1457  g[i] = 0.;
1458 
1459  switch(i) {
1460  case 0:
1461  h[0].zero(); h[1].zero(); h[2].zero(); h[3].zero();
1462  h[4].zero(); h[5].zero(); h[6].zero(); h[7].zero();
1463  break;
1464 
1465  case 1:
1466  h[1].zero(); h[8].zero(); h[9].zero(); h[10].zero();
1467  h[11].zero(); h[12].zero(); h[13].zero(); h[14].zero();
1468  break;
1469 
1470  case 2:
1471  h[2].zero(); h[9].zero(); h[15].zero(); h[16].zero();
1472  h[17].zero(); h[18].zero(); h[19].zero(); h[20].zero();
1473  break;
1474 
1475  case 3:
1476  h[3].zero(); h[10].zero(); h[16].zero(); h[21].zero();
1477  h[22].zero(); h[23].zero(); h[24].zero(); h[25].zero();
1478  break;
1479 
1480  case 4:
1481  h[4].zero(); h[11].zero(); h[17].zero(); h[22].zero();
1482  h[26].zero(); h[27].zero(); h[28].zero(); h[29].zero();
1483  break;
1484 
1485  case 5:
1486  h[5].zero(); h[12].zero(); h[18].zero(); h[23].zero();
1487  h[27].zero(); h[30].zero(); h[31].zero(); h[32].zero();
1488  break;
1489 
1490  case 6:
1491  h[6].zero(); h[13].zero(); h[19].zero(); h[24].zero();
1492  h[28].zero(); h[31].zero(); h[33].zero(); h[34].zero();
1493  break;
1494 
1495  case 7:
1496  h[7].zero(); h[14].zero(); h[20].zero(); h[25].zero();
1497  h[29].zero(); h[32].zero(); h[34].zero(); h[35].zero();
1498  break;
1499  }
1500  }
1501  }
1502  }
1503  break;
1504 
1505  default:
1506  MSQ_SETERR(err)("element type not implemented.",MsqError::NOT_IMPLEMENTED);
1507  return false;
1508  }
1509  return true;
1510 }
#define MSQ_ERRZERO(err)
Return zero/NULL on error.
static const double MSQ_ONE_THIRD
Definition: Mesquite.hpp:128
void zero()
Sets all entries to zero (more efficient than assignement).
bool h_gdft_3(double &obj, Vector3D g_obj[4], Matrix3D h_obj[10], const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
bool h_gdft_3_v0(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
CornerTag< TargetMatrix > targetMatrices
Target matrix data.
j indices k indices k
Definition: Indexing.h:6
Used to hold the error state and return it to the application.
bool h_gdft_2_v1(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
EntityTopology
Definition: Mesquite.hpp:92
bool g_gdft_2_v1(double &obj, Vector3D &g_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
Matrix3D transpose(const Matrix3D &A)
bool m_gdft_3(double &obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
requested functionality is not (yet) implemented
bool g_gdft_3_v2(double &obj, Vector3D &g_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
MsqMeshEntity is the Mesquite object that stores information about the elements in the mesh...
Vector3D is the object that effeciently stores information about about three-deminsional vectors...
bool compute_element_analytical_hessian(PatchData &pd, MsqMeshEntity *e, MsqVertex *fv[], Vector3D g[], Matrix3D h[], int nfv, double &m, MsqError &err)
bool h_gdft_2_v0(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
bool g_gdft_3_v0(double &obj, Vector3D &g_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
bool g_gdft_3_v3(double &obj, Vector3D &g_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
bool h_gdft_2(double &obj, Vector3D g_obj[3], Matrix3D h_obj[6], const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
bool compute_element_analytical_gradient(PatchData &pd, MsqMeshEntity *e, MsqVertex *fv[], Vector3D g[], int nfv, double &m, MsqError &err)
Virtual function that computes the gradient of the QualityMetric analytically. The base class impleme...
void QR(Matrix3D &Q, Matrix3D &R, const Matrix3D &A)
msq_stdc::size_t vertex_count() const
Returns the number of vertices in this element, based on its element type.
double get_barrier_delta(MsqError &err)
Returns delta based on the minimum and maximum corner determinant over all elements in the patch This...
size_t get_element_index(MsqMeshEntity *element)
bool h_gdft_3_v2(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
3*3 Matric class, row-oriented, 0-based [i][j] indexing.
bool h_gdft_3_v1(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
bool g_gdft_2_v2(double &obj, Vector3D &g_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
#define MSQ_SETERR(err)
Macro to set error - use err.clear() to clear.
bool evaluate_element(PatchData &pd, MsqMeshEntity *e, double &m, MsqError &err)
Evaluate the metric for an element.
bool m_gdft_2(double &obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
blockLoc i
Definition: read.cpp:79
const MsqVertex * get_vertex_array(MsqError &err) const
Returns a pointer to the start of the vertex array.
j indices j
Definition: Indexing.h:6
bool g_gdft_3_v1(double &obj, Vector3D &g_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
Class containing the target corner matrices for the context based smoothing.
EntityTopology get_element_type() const
Returns element type.
const msq_stdc::size_t * get_vertex_index_array() const
Very efficient retrieval of vertices indexes (corresponding to the PatchData vertex array)...
void inv(Matrix3D &Ainv, const Matrix3D &A)
bool g_gdft_2_v0(double &obj, Vector3D &g_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
bool h_gdft_2_v2(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
MsqVertex is the Mesquite object that stores information about the vertices in the mesh...
bool h_gdft_3_v3(double &obj, Vector3D &g_obj, Matrix3D &h_obj, const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)
void compute_corner_normals(Vector3D normals[], PatchData &pd, MsqError &err)
Uses a MeshDomain call-back function to compute the normal at the corner.
static const double MSQ_3RT_2_OVER_6RT_3
Definition: Mesquite.hpp:130
bool g_gdft_2(double &obj, Vector3D g_obj[3], const Vector3D x[3], const Vector3D &n, const Matrix3D &invR, const Matrix3D &Q, const double alpha=0.5, const Exponent &gamma=1.0, const double delta=0.0, const double beta=0.0)
bool g_gdft_3(double &obj, Vector3D g_obj[4], const Vector3D x[4], const Matrix3D &invR, const Matrix3D &Q, const double alpha=1.0/3.0, const Exponent &gamma=2.0/3.0, const double delta=0.0, const double beta=0.0)