ILLINOIS ROCSTAR

Surfdiver Users Guide
Version 3.0.0

February 27, 2014

Copyright ©2014 Illinois Rocstar LLC

www.illinoisrocstar.com

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

License

Surfdiver sources, executables, and this document are the property of Illinois Rocstar LLC.
Licensing and support of the software package, including full source access for government,
industrial, and academic partners, are arranged on an individual basis. Please contact Illinois
Rocstar at

e tech@illinoisrocstar.com

+ sales@illinoisrocstar.com

for support and licensing.

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

Contents
1 Introduction 4
2 Input File Format 4
3 Output File Format 6
3.1 Fields for Sequential Meshes L 6
3.2 Additional Fields for Partitioned meshes 8
4 Building and Running Surfdiver 9
5 Advanced Features 10
6 Troubleshooting and Testing 11
6.1 Visualization 11

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

1 Introduction

Surfdiver is an executable program built on top of Rocface for constructing a common re-
finement or common tessellation of two nonmatching surface meshes, which can then be
used to support transferring data between these meshes. Rocface was developed by Xi-
angmin Jiao at the Center for Simulation of Advanced Rockets (CSAR) at University of
[linois, as a framework component of the Rocstar suite. It uses the Roccom framework for
data management and uses Rocin and Rocout of the framework for high-level 1/O support
(in HDF or CGNS). Most of the documents of these supporting libraries can be found at
http://www.cse.uiuc.edu/~jiao/Roccom.

Figure 1 shows the data flow of Surfdiver. It reads two surface meshes in HDF files, detects
the features (such as ridges and corners) in the meshes with user-provided parameters, and
then computes the common refinement of input meshes. Note that the input meshes are
assumed to model the same surface geometry, but discretization errors may be present so
that the two discrete surfaces need not coincide. The nodes and elements of the comment
refinement, referred to as sub-nodes and sub-elements (sub-faces), compose a mesh that is
“nested” in the elements of both input meshes. We determine two separate copies of this
common refinement by assigning different coordinates and numbering systems based on the
two input meshes. These resulting two copies of the common refinement are then written
into two groups of HDF files, one corresponding to each input mesh, in a user-specified
directory. The input and output files of Surfdiver can be visualized using Rocketeer, or be
converted into Tecplot or VTK format using Roccom’s utility tools hdf2plt and hdf2vtk to be
visualized using other tools.

The purpose of this documentation is to describe the file formats of Surfdiver, the procedure
for building and running Surfdiver, and advanced procedures for tuning feature-detection
parameters. This document uses some basic terminology of Roccom, including windows,
panes, and attributes. A window is a distributed object composed of a mesh and its associated
field attributes. A window may have zero, one or more panes, which may correspond to
partitions of a mesh (for parallel computations) or correspond to patches with different
boundary conditions. The attributes are referenced by character strings, including some
reserved names (such as nodal coordinates “nc”; connectivity tables “:t3”, “:q4”, etc.) and
user-defined attribute names. Please refer to Roccom’s Users Guide for more detail.

2 Input File Format

Surfdiver takes two separate groups of HDF files as input. Each group of input files stores
a surface window, composed of a finite-element style surface mesh (including the nodal
coordinates (double-precision) and element connectivity (integers)), which can be either a
triangular, quadrilateral, or mixed unstructured mesh, or a multi-block structured mesh. For
a partitioned mesh, the file may provide the connectivity among shared nodes along bound-
aries between different partitions (referred to as “pconn”). If this pconn is not provided, then
Rocface will determine it automatically by comparing the differences of nodal coordinates

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

) Optional inputs
Surfdiver p p
""""" p

S e .

. q4---}F---- | . 1
Rocin L Control file !

S e e e ==

win1¢ ¢ win2

Feature Detection

vy

Mesh Overlay

win_sdvl ¢ ¢ win_sdv2 |
_, Output Dir |

Rocout <---q----- _ :
(comand line),

Figure 1: Data flow of Surfdiver.

5

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

against an automatically determined tolerance. These HDF files can be generated easily by
first creating a window using Roccom’s API and then calling Rocout.

Special note for Rocstar users: When using Surfdiver within Rocstar, each pane may have an
integer-type attribute associated with it, named “bcflag”. If this attribute is present, then
Surfdiver will obtain only the panes with beflag equal to 0 or 1 and ignore all the other panes.
This convention was adopted to support rocket simulations with Rocstar, for which the panes
with bcflag equal to 0 are interacting but not burning, those with value 1 are interacting
and burning, and those with value 2 are non-interacting.

3 Output File Format

Surfdiver creates two groups of files to store the common refinement of surface meshes, one
for each input window. The number of files in each input window is equal to the number of
panes of the window. In the special case of sequential meshes, there will be one output file
for each window. In the following, we will describe the contents in these files.

3.1 Fields for Sequential Meshes

If the input file for one window has prefix “win” (See Section 4 for details how the prefix is
determined), as illustrated in Figure 2, the output file contains the following key information:

1. A window “win”, including its coordinates, and element connectivity. This window
essentially duplicates the mesh of the input window so that the output file is self
contained.

2. A window “win_sdv”, including its coordinates, element connectivity (composed of
triangles). The sub-nodes are numbered arbitrarily. The sub-faces are sorted based on
the IDs of their parent faces, so the sub-faces contained within a face are numbered
consecutively. In addition, the following attributes are defined:

a) mapping from each sub-node to its parent face, or more precisely, one of its hos
ing f h sub-node to it t f isel f its host
faces that contain the sub-node (“sn_parent_fclD”, one integer per sub-node)

(b) mapping from each sub-node to the natural coordinates within its parent face
(“sn_parent_ncs”, two single-precision numbers per sub-node. Note that all these
local coordinates are between 0 and 1.);

(¢) mapping from sub-nodes to their counterparts in the other window (“sn_cntpt_ndID”,
one integer per sub-node);

(d) mapping from each node to its corresponding sub-node ID (“sn_subID”, one in-
teger per node);

(e) mapping from each sub-face to its parent face (“sf_parent”, one integer per sub-
face);

6

A
MVA |llinois Rocstar LLC Surfdiver Users Guide

5 6
Blue in
| é(sf_parent, £ (sn_parent_facelD,
i sf_ncs) 3 i sn_parent_ncs)
Blue out e \'VL: —
/ 4 sf_offsets - 83

Tl 61T

Green out

Green in

i (sn_parent_facelD,
sn_parent_ncs)

Figure 2: Schematic of common refinement of surface meshes.

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

(f) mapping from each sub-face to the local parametric coordinates of its sub-nodes
in its parent face (“sf_ncs”, six single-precision numbers per sub-face);

(g) mapping from each input face to the offset of its first sub-face (i.e., the sub-face
ID minus 1, “sf_offset”, one integer per sub-face);

(h) mapping from each sub-face to their counterparts in the other window (“sf_cntpt_ndID”,
one integer per sub-face);

(i) Additional fields (typically not needed by applications): the local coordinates
(“sn_permu_ncs”, two single-precision numbers per sub-node) of each sub-node
in a permutation of its parent face (indicated by the edge “sn_permu_edID”, one
integer per sub-node), so that the sub-nodes at vertices have natural coordinates
(0,0) and those at edges have natural coordinates (a, 0) for 0 < a < 1.

All the attributes with prefix “sn_" correspond to data associated with sub-nodes, and
those with prefix “sf_” correspond to data associated with sub-faces. Except for “sn_sublD”
and “sf_offsets”, which are panel attributes of lengths equal to the number of nodes and
the number of faces of the input window, respectively, all other “sn_" attributes are nodal
attributes and “sf_” attributes are elemental (facial) attributes of window “win_sdv”. In
addition, note that all the node and element IDs start from 1, except for sf_offset stores
array index starting from 0.

The easiest way to read in these attributes is to use Rocin. A sample C++ code for reading
in these attributes can be found at Rocface/test/readsdv.C.

3.2 Additional Fields for Partitioned meshes

If an input mesh has multiple panes (or partitions), then the panes of window “win_sdv”
follow exactly the same partitioning as that of window “win”. In addition, the following
contents in the output HDF files become important as well. (Note that these additional
fields are written out for sequential meshes as well, but they can be ignored for sequential
meshes and hence be ignored.)

1. Pane connectivity “pconn” in window “win”.

2. Window “win_sdv” contains the following additional fields

a) mapping from sub-faces to the pane IDs of their counterparts in the other window
ing f b-faces to th IDs of thei t ts in the other wind
(“sf_cntpt_pnID”);

(b) mapping from sub-nodes to the pane IDs of their counterparts in the other window
(“sn_cntpt_pnID”);

(c) auxiliary communication information useful for parallel transfer (“b2v” and “v2b”).

A sub-face may have different element IDs in the output windows, and their owner panes
may have different pane-IDs. The array “sf_cntpt_pnID” stores the pane ID of the sub-face

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

in the other window and “sf_cntpt_ndID” contains the sub-element-ID in the owner pane
of the other window. Similarly, “sn_cntpt_pnlD” stores the pane ID of the sub-node in the
other window and “sn_cntpt_ndID” contains the sub-node-ID in the owner pane of the other
window.

4 Building and Running Surfdiver

You can obtain Surfdiver as part of Rocstar suite from CSAR’s CVS repository. A CVS
account is needed. Talk to Mark Brandyberry to get account. Check out Rocstar’s code
using from directory “genx/Codes”.

Surfdiver uses many modules of the Roccom framework and Rocface. Surfdiver is built au-
tomatically as part of the Rocstar suite. You may also build it separately by first building
Roccom and then build Rocface by invoking the make command. Note that you must use the
GNU make. You may run “gmake help” (or “make help” on Linux or Mac OS X) to see differ-
ent compilation options. After successfully built, Surfdiver will reside at genx/bin/surfdiver.

To invoke Surfdiver, use the following command line:
surfdiver <Surf-mesh1> <Surf-mesh2> [output_dir] [Control File]

It is important that the prefixes of the input files are different. The prefix is
defined as the alphabetical part of a base file name, e.g., the prefix of “dir/ifluid_1.hdf”
or “dir/ifluid1.hdf” is “ifluid”. Each surface-mesh is an HDF file name (e.g., ifluid.hdf), a
HDF filename pattern (e.g., “ifluid_*.hdf", note that the quotation marks are required in
this case to protect *’), or a Rocin control file listing all the files and panes. Note that these
prefixes (such as “ifluid”) and their extensions with “ sdv” (such as “ifluid sdv”) are used
as the “material” names in the HDF files are important when reading the HDF files. See
the example code Rocface/test/readsdv.C to see how the prefix is used.

The third argument specifies the directory for the output files, and when not present, the
default is the current directory. If the input file for one window has a prefix “win”, then the
output file names have the pattern “win_<pane_ID>_sdv.hdf”. The fourth argument may
specify a control file. The control file is a text file, and each line has the format of

option=value
Currently, the supported options include:

snap__tolerance The relative tolerance for merging subvertices (such as 0.01) along an edge
if the distance between them is smaller than the tolerance times the edge length.

print__features Create HDF files to include the detected features to help debugging.

verbosity the level of verbosity. Value is an integer.

9

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

5 Advanced Features

Rocface automatically detects the corners and ridges of a surface mesh. For most models, the
default parameters set by Rocface would work. For some complex models, one can control
the parameters of feature detection by providing a control file <window name>.fc. This file
should have five lines:

1. The first line contains four parameters for face angle: cosine of the upper bound, cosine
of the lower bound, the signal-to-noise ratio, and cosine of an open-end of a 1-feature.

2. The second line contains three parameters for angle defect: upper bound, lower bound,
and signal-to-noise ratio.

3. The third line contains three parameters for the turning angle: cosine of the upper
bound, cosine of the lower bound, and the signal-to-noise ratio.

4. The fourth line contains four parameters controlling the filtration rules: the minimum
edge length for open-ended 1-features, whether to apply the long-falseness filtration
rule, whether to apply the strong-end filtration rule, and whether to snap 1-features of
input meshes on top of each other.

5. The fifth line controls the verbosity level. The default value is one. Setting verbosity
level to greater than one will instruct Rocface to write out HDF files “*_fea.hdf”, which
contain the feature information which is very helpful for tuning feature detection.

The following is a sample control file containing the default values.

0.76604444 0.98480775 3 0.98480775 # Feature angles

1.3962634 0.314159265 3 # Angle defects
0.17364818 0.96592583 3 # Turning angles
6100 # Filtration rules
2 # Verbosity level

If the control file is missing, then the default values (as shown above) will be used. These
default values should work for most cases. If it ever becomes necessary to fine-tune the
feature-detection parameters, adjusting only the parameters of feature angles (i.e., the first
line of the .fc files) should suffice most of time. The following procedure is useful in deter-
mining the proper values of feature angles:

1. Find the ifluid_fea*.hdf and isolid_fea*.hdf files in the output directory. These files are
generated by surfdiver if the “fc” files are present and the verbosity level in these files
are greater than 1.

2. Convert these HDF files into Tecplot files using the utility hdf2plt. Typically, the
commands look like (note that the quotation marks are important):

A
AVA |llinois Rocstar LLC Surfdiver Users Guide

Table 1: Troubleshooting procedure.

Problem ‘ Potential causes ‘ Suggested solutions
Mismatch bounding-boxes. Different units. Check dimensions of input meshes.
Incorrect boundary conditions. | Check application configuration files.
Features do not match. Incorrect boundary conditions. | Check application configuration files.
Different geometric models. Check geometry of input meshes.
Weak geometric features. Tune feature-detection parameters.
After feature matching. Geometry mismatch. Switch two windows
in command line.
Geometric features not detected. Visualize features
and tune parameters.
Other errors. Bugs or unknown issues? Contact xjiao@acm.org.

(a) hdf2plt “ifluid_fea*.hdf" ifluid.plt
(b) hdf2plt “isolid_fea*.hdf" isolid.plt

3. Load the ifluid.plt and isolid.plt into two separate Tecplot sessions. Look at the contour
of “frank” (stands for feature rank) to eyeball the discrepancies of the detected features
in the input meshes.

4. Use the “probe” tool of Tecplot to look at the values of “face angle”, and adjust
the feature-angle thresholds based on the values “face angle” of false features. Typ-
ically, if some edges are marked as features in correctly, then one should increase the
feature-angle thresholds; if some feature edges are missing, then one should decrease
the feature-angle thresholds.

6 Troubleshooting and Testing

Table 1 lists the most commonly seen problems and their potential causes and suggested
solutions.

6.1 Visualization
The HDF files read and written by Surfdiver can be visualized using Rocketeer. In the input
files, the most useful values to visualize is “bcflags”. In the output files, it may be useful to

visualize the meshes to see their sizes. For feature detection, it may be helpful to visualize
the feature ranks (“franks”) and face angle (“face_angle”).

11

	Introduction
	Input File Format
	Output File Format
	Fields for Sequential Meshes
	Additional Fields for Partitioned meshes

	Building and Running Surfdiver
	Advanced Features
	Troubleshooting and Testing
	Visualization

