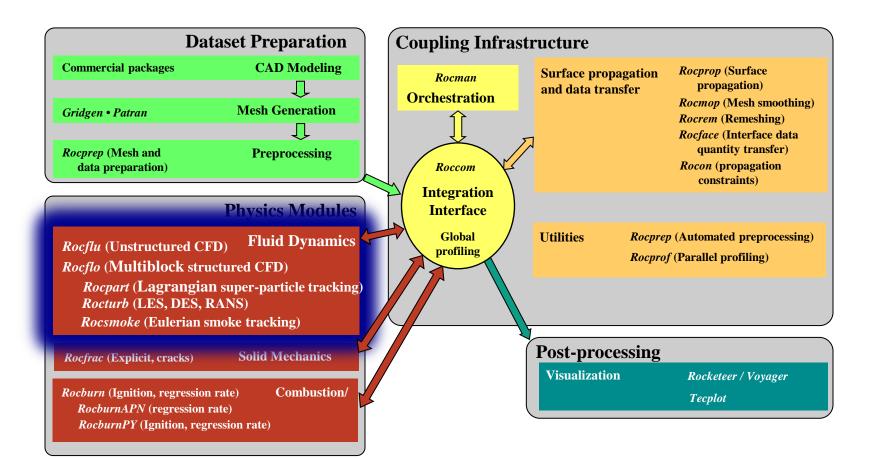
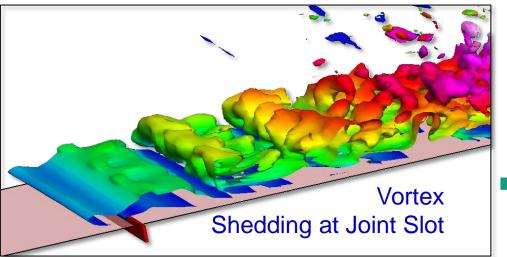

Section 7 Physics Modules

Distribution authorized to Sandia National Laboratories Personnel only (IllinoisRocstar Proprietary Information). Other requests for this document shall be referred to IllinoisRocstar LLC (mdbrandy@illinoisrocstar.com)



1

© 2012 IllinoisRocstar LLC



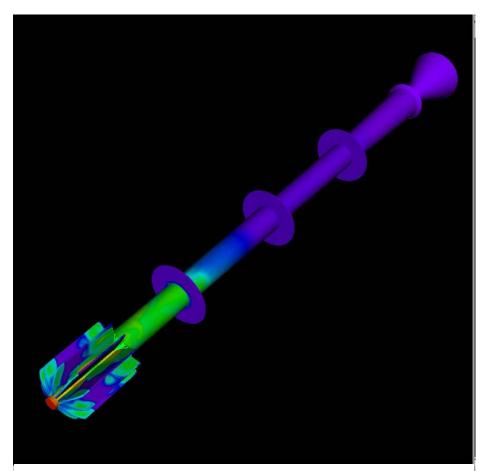
Fluid Dynamics: Rocflo

- Governing equations
 - Unsteady, compressible, Navier-Stokes or Euler

- Numerical formulation
 - Finite volume
 - Explicit Runge-Kutta
 - Arbitrary Lagrangian-Eulerian (ALE) method on moving meshes
 - 2nd order central scheme
 - Roe upwind scheme
- Code characteristics
 - Structured, multi-block mesh
 - Plug-in modules for turbulence, particles, smoke, radiation

Unstructured Mesh Fluids: Rocflu

Mesh


 Mixed tetrahedra, prisms, pyramids, hexahedra

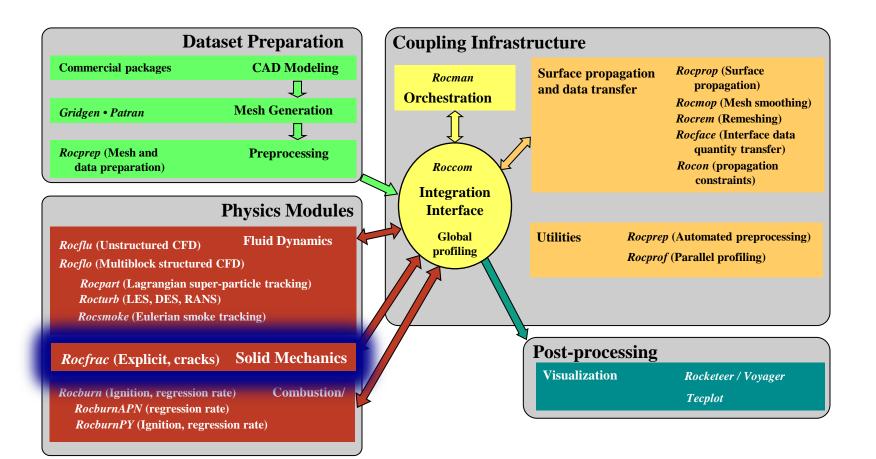
Method

- Explicit, finite-volume, ALE
- First or second order
- Higher order WENO scheme

Models

- Lagrangian particles/superparticles
- Eulerian smoke
- Built-in propagation constraints
- Time-zooming

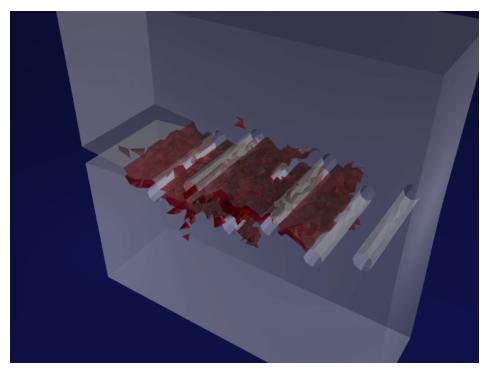
Gas Temperature in Igniting RSRM


Files Required for Fluid Simulations

Both Rocflo and Rocflu require the same files, but have differences in format and naming

ASCII-format Gridgen mesh files produced (*Rocflo / Rocflu*):

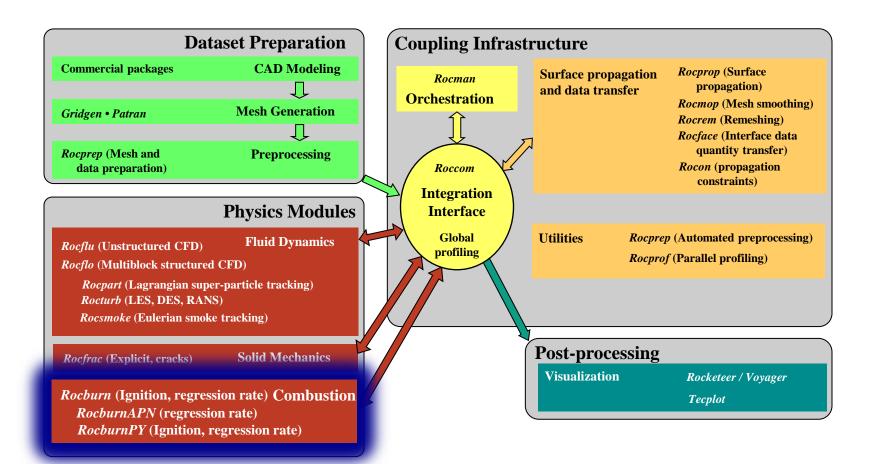
- Mesh file (<casename>-PLOT3D.grd/ <casename>-COBALT.inp
- Boundary condition file (<casename>-PLOT3D.inp/ <casename>-COBALT.bc
- *Rocstar* boundary condition File <casename>.bc
- Rocstar input file <casename>.inp
- Gridgen to Rocstar boundary condition map file
 - <casename>-PLOT3D.bcmp for Rocflo
 - <casename>.cgi for Rocflu



Structural Dynamics: *Rocfrac*

- Large strains, rotations
- Explicit/Implicit, ALE
- Non-linear material models
 - Hyperelastic
 - > Arruda-Boyce
 - Neo-Hookean
 - Non-linear constitutive laws
 - Viscoplastic
 - Porous viscoelastic
- Mixed-enhanced elements
- Transient thermal solver
- Crack propagation
 - Cohesive elements allow failure
- Stabilized and mixed displacement-pressure elements

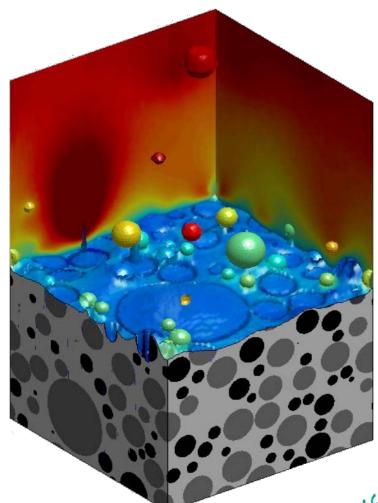
Crack Propagation in Material with Holes



Files Required for *Rocfrac* Simulation

Two files are required:

- ASCII-format grid file produced by Patran: <casename>.out
- ASCII-format input file: RocfracControl.txt


Rocburn Combustion Module

RocburnAPN

- 1-D heat conduction into propellant
- Uses gas pressure power law
- Provides regression rate for burning propellant
- Burnout capabilities, no heating

RocburnPY

- 1-D heat equation
- Dynamic heating
- Geometrically dependent film coefficient
- Ignition modeling
- Burnout
- Provides aPⁿ regression rate for burning elements
- Can use lookup tables

See cover sheet for distribution restrictions.

Files Required for *Rocburn* Simulation

• One file is required:

• ASCII-format input file: RocburnAPNControl.txt

OR

• ASCII-format input file: RocburnPYControl.txt

Physics Module Files: RocburnAPN

RocburnAPNControl.txt

0.07696	a in rb=a*P^n, rb in cm/sec and P in atm, a_p (cm/sec)
0.461	n in rb=a*P^n, rb in cm/sec and P in atm, n_p
1	Maximum_number_of_spatial_nodes,_nxmax
2855.0	adiabatic flame temperature, Tf_adiabatic (K)
298.00	initial temperature, To_read (K)
- 1	

Rocburn_2D_Output/Rocburn_APN

Physics Module Files: *RocburnPY*

RocburnPYControl.txt

0.3912	a_p	in rb = a_p*(P/Pref)^n, rb in cm/sec and P in atm
0.461	n_p	in rb = a_p*(P/Pref)^n, rb in cm/sec and P in atm
34.0	Pref	in rb = a_p*(P/Pref)^n, atm
2850.0	Tstar0	adiabatic flame temperature, Tstar0 (K)
300.0	То	cold temperature, To (K)
850.0	Tignition	ignition temperature, Tignition (K)
300.0	Tsurf	surface temperature, Tsurf (K)
560.08d0	film_cons	film coefficient [W/ (m^2 K)]
1	ixsymm	axisymmetric initial burning, use x_surf_burn
1.16200d-2	x_surf_burn	last surface x location burning from the onset
1.d8	press_max	maximum pressure allowed to be passed in [Pa]
1.d2	press_min	minimum pressure allowed to be passed in [Pa]
1.0d0	rb_max	maximum burn rate allowed [m/sec]
-1.0d-6	rb_min	minimum burn rate allowed [m/sec]
1.d5	Tf_max	maximum gas temperature allowed [Kelvin]
100.0d0	Tf_min	minimum gas temperature allowed [Kelvin]
0	TabUse	use a table or not
name	TabName	name of table to use

