Section 6 Service Components

Distribution authorized to Sandia National Laboratories Personnel only (IllinoisRocstar Proprietary Information). Other requests for this document shall be referred to IllinoisRocstar LLC (mdbrandy@illinoisrocstar.com)

Rocstar Simulation Suite Architecture

© 2012 IllinoisRocstar LLC See cover sheet for distribution restrictions

Rocstar Simulation Suite Architecture

© 2012 IllinoisRocstar LLC See cover sheet for distribution restrictions.

Multiphysics Simulation Service Utilities

Middleware services

- IO: screen, disk
- Mesh-level communication: point to point, collectives
- Intermodule mesh/processor mapping
- Control callbacks

Numerical services

- Data transfer: Surface-surface, volume-volume (abutting, overlapping)
- Algebraic manipulation: data massaging, unit conversions, etc

Geometric services

- Mesh optimization: Mesquite-based
- Surface propagation: Entropy conserving Lagrangian
- Data structures: facilitate general service constructions

Illingis Co

© 2012 IllinoisRocstar LLC See cover sheet for distribution restrictions.

I/O and Control Services

- I/O Services
 - Disk I/O
 - Periodic snapshots for visualization and restart
 - Simple high-level interface
 - Collective output with active buffering
 - Parallel non-blocking
 - Multiple file formats (HDF/CGNS)
 - Screen I/O
 - Stdout/stderr (logged or to screen)
 - Parallel debugging logs
 - Automatic module tagging

- Control flow services
 - Allows clean system interrupts
 - Prevents premature exits from batch system
 - Implemented as callbacks
 - Stop simulation
 - Restart simulation
 - Force checkpoint
 - Request domain remeshing

Communication between Physics Codes

- Exchange interface data between meshes
 - Accurate and conservative methods
 - Scalable parallel implementation
- Common refinement of interface meshes
 - Interface has two different discretizations

Computes "intersections" of cells of input meshes

Interface Data Transfer: Rocface 2.0

Interpolates quantities across nonmatching meshes

- Constructs overlay mesh
 - Common refinement of two meshes
 - Enables exact mass and momentum conservation
- Minimizes errors
 - Coefficients provide smallest least squares norm
 - Huge (> 20x) improvement over standard method (Farhat, et al., 1995)

© 2012 IllinoisRocstar LLC See cover sheet for distribution restrictions

Mesh Enhancement Services

Bad elements eliminated

- Problem: degradation of mesh quality
- Three tiered approach
 - Mesh smoothing
 - > Frequent
 - Relatively cheap
 - Not effective forever
 - Local mesh repair
 - Last ditch effort to avoid drastic consequence
 - Solution degradation
 - Simulation failure
 - Expensive remeshing
 - More expensive data structures rebuilt
 - Global remeshing
 - Last resort produce a whole new mesh
 - Most expensive
 - Time
 - Computational intensity
 - Simulation impact (fidelity)

Mesh Modification

- Smoothing (frequent)
 - Uses parallelized version of MESQUITE (Sandia)
 - Reduce/average on shared nodes
 - Move existing nodes
 - No solution transfer required
- Local repair
 - Simmetrix driven
 - Modify existing mesh with basic operations
- Global remeshing (triggered)
 - Simmetrix driven
 - Produce new mesh of advanced geometry
 - General procedure:
 - Stitch together physical boundaries
 - Recreate geometrical model
 - Preserve features (unless too small)
 - Remesh surface
 - Remesh volume
 - Repartition for parallel execution
 - Transfer solution to new volume mesh
 - Volume weighted, conservative
 - Restart simulation

Dynamic Moving Interfaces

- Entropy-conserving surface propagation: face offsetting
- Moves vertices by constrained minimization
- Prevents development of cusps
- Redistributes vertices in tangent space

Marker-particle method

Face-offsetting method

© 2012 IllinoisRocstar LLC

Infrastructure Summary

- Software integration infrastructure
 - Facilitates integration of independently developed codes (MPI Libraries)
 - Publication of native methods and data structures
 - High-level data management
 - Requires few changes to existing apps
 - Encapsulation into component objects called modules
 - OO oriented module management
- Service modules
 - High-level middleware utilities
 - State-of-the-art numerical and geometric algorithms
 - Advanced novel data mapping

- High-level orchestration infrastructure
 - Designed to accommodate growing complexities
 - Static interface for physics modules
 - Plug and play
 - High-level Simulation API
 - Work in progress