
Rocstar Quickstart Guide

Illinois Rocstar LLC

December 26, 2015

Copyright ©2015 Illinois Rocstar LLC

www.illinoisrocstar.com

Illinois Rocstar LLC Rocstar Quickstart Guide

License

The software package sources and executables referenced within are developed and supported
by Illinois Rocstar LLC, located in Champaign, Illinois. Rocstar is distributed under the
University of Illinois/NCSA Open Source License (http://opensource.org/licenses/NCSA).
Commercial support for Rocstar is available by contacting Illinois Rocstar at:

• www.illinoisrocstar.com

• tech@illinoisrocstar.com

• sales@illinoisrocstar.com

2

Illinois Rocstar LLC Rocstar Quickstart Guide

Contents

1 Introduction 3

2 Installation 5
2.1 Prerequisites and Third-Party Libraries . 5
2.2 Obtaining Rocstar . 6
2.3 Preliminaries . 6
2.4 Build Rocstar . 7

3 Test Rocstar 7
3.1 Quick Test . 7
3.2 Automated Testing . 8
3.3 Rocket Test . 8

1 Introduction

This quickstart guide provides a brief overview of applications architecture and instructions
for how to build and run the Rocstar multiphysics simulation application. Rocstar is a
massively parallel simulation software platform originally designed and implemented by the
University of Illinois Center for Simulation of Advanced Rockets (CSAR) to simulate the
internal ballistics of solid rocket motors from first principals. Since its original design and
implementation, Rocstar and its development have been taken up by Illinois Rocstar. Rocstar
has been applied to many multiphysics problems wherein multiple physical domains interact
across moving, reacting interfaces.
An overview of the Rocstar Simulation Application architecture is shown in Figure 1. The
Rocstar simulation application includes a number of components for simulating fluid-structure-
combustion interactions and coupling support. A brief overview of Rocstar components
follows.

Fluid Domains
Rocstar includes two fluid applications designed to simulate compressible multiphase
flows.

• Rocflo is a block-structured, explicit finite-volume (FV) flow solver with sup-
port for LES and RANS turbulence and Lagrangian and Eulerian multiphase
flows. Rocflo solves the compressible Navier-Stokes equations on moving block-
structured grids.

• Rocflu is an unstructured, explicit FV flow solver with support for Lagrangian and
Eulerian multiphase flows. Rocflu solves the compressible Navier-Stokes equations
and supports moving geometries.

3

Illinois Rocstar LLC Rocstar Quickstart Guide

Structure Domains
Rocfrac is an unstructured computational structural mechanics (CSM) and transient
thermal solver with both explicit and implicit options. Rocfrac supports several mate-
rial models including linear elastic, Arruda-Boyce, and Neohookian.

Combustion
Rocburn is a zero and one-dimensional combustion solver designed to implement burn-
rate and material heating models. Rocburn is capable of simluating material heating,
ignition, and regression rates for burning or otherwise reacting surfaces.

Services
Rocstar includes a number of modules for simulation support and orchestration.

• Rocman is the main driver and orchestrator for the Rocstar simulation application.
Rocman implements and manages the interactions between the components and
control flow of the Rocstar simulation application.

• Rocprop is a surface propagation service module providing Lagrangian surface
tracking and propagation for Rocstar. Rocprop implements marker-particle, and
the more advanced face-offsetting methods for surface propagation.

• Rocmop is a mesh optimization service module providing volume mesh smoothing
for unstructured meshes. Rocmop makes use of a customized and parallelized ver-
sion of the Mesquite mesh optimization framework developed by Sandia National
Lab.

• Rocon is a propagation constraint service module providing the capability to con-
strain mesh propagation to geometries specified by triangle surface meshes.

• Roccom is the underlying framework and glue which allows Rocstar components
to export and import data and methods across software component boundaries.
Roccom also includes internal modules for disk I/O (Rocin,Rocout), and mesh-
aware communication operations (Rocsurf, Rocmap).

• Rocface is a data mapping service module providing transfer services for solution
data across disparately discretized surfaces. Rocface uses a highly advanced least-
squares-data-transfer algorithm based on a common refinement of participating
surfaces.

4

Illinois Rocstar LLC Rocstar Quickstart Guide

Figure 1: Rocstar Simulation Application Architecture

2 Installation

2.1 Prerequisites and Third-Party Libraries

Rocstar has a few dependencies on third-party libraries (TPL). These TPL and other de-
pendencies are summarized below.

• Fortran90 and C++ - Rocstar requires F90 and C++ compilers in order to build. Rocstar
is known to work under most commonly available compilers, but is most extensively
tested using those from Intel, and GCC.

• MPI - Rocstar uses MPI1 constructs and is known to work under MPICH-derived and
OpenMPI implementations.

• BLAS/LAPACK - Rocstar requires BLAS and LAPACK. There are no known Rocstar
defects reported for any BLAS and LAPACK implementations.

• HDF4 - Rocstar requires the HDF4 libraries and development package in order to
build. One of HDF4 or CGNS must be available. HDF4 can be obtained from The
HDF Group.∗ Note that HDF5 will not work, Rocstar requires HDF4.

• CGNS - Rocstar can use CGNS libraries in place of the HDF4 libraries mentiond above.
One of these I/O libraries must be available on the host system.

• Metis-4 - Rocstar requires the Metis graph partitioner version 4. Version 5 and above
will not work due to non-backwards-compatible changes to the Metis API. Metis-4 can
be obtained from Karypis Lab†. Note that Metis version 4 does not include an install
target in its build system. After building Metis-4, the library and includes will need
to be placed in an install location into lib and include respectively.

∗http://www.hdfgroup.org/products/hdf4/
†http://glaros.dtc.umn.edu/gkhome/views/metis

5

http://www.hdfgroup.org/products/hdf4/
http://glaros.dtc.umn.edu/gkhome/views/metis

Illinois Rocstar LLC Rocstar Quickstart Guide

• IRAD - Rocstar uses some basic IO and testing functionalities provided in the Illi-
nois Rocstar Application Development toolkit (IRAD). This library is provided with
Rocstar.

• CMake - Rocstar uses the CMake build system. CMake is available from Kitware‡.

2.2 Obtaining Rocstar

The easiest way to get Rocstar is through its GitHUB project:

> git clone https://github.com/IllinoisRocstar/Rocstar
> cd Rocstar
> git submodule update --init --recursive

The above commands will grab the latest versions of Rocstar and IRAD. IRAD is a required
TPL and is built automatically by the Rocstar build process.

2.3 Preliminaries

The following environment variables need to be set before building Rocstar.

CMAKE_PREFIX_PATH=/full/path/to/metis:/absolute/path/to/tpl

Note that CMAKE_PREFIX_PATH should be a colon-separated list of paths to the TPL
installation locations if they are in places other than typical system paths (e.g. /usr,
/usr/local). CMake will automatically look in ${CMAKE_PREFIX_PATH}/{include,lib,lib64}
for needed libraries and include files.
In addition, for the purposes of this guide, the following variables will be used to indicate
the the distribution and installation directories.

ROCSTAR_SOURCE=/path/to/distribution/directory
ROCSTAR_BUILD=/path/to/installation/directory
ROCSTAR_EXAMPLES=${ROCSTAR_SOURCE}/Examples/NDAs

Note that ROCSTAR_SOURCE should not be the same path as ROCSTAR_BUILD. If it
does not exist, create the build directory and cd into it with the following commands.
> mkdir ${ROCSTAR_BUILD}
> cd ${ROCSTAR_BUILD}

By default, Rocstar will build the IRAD library at compile time if it is located in a folder
named IRAD in the top level of the source tree. If the user has a pre-existing install of
IRAD that they would prefer to use instead, the path to it can be specified at compile time
by including the full path to IRAD in the CMAKE_PREFIX_PATH variable. .

‡http://www.kitware.com/cmake

6

http://www.kitware.com/cmake

Illinois Rocstar LLC Rocstar Quickstart Guide

2.4 Build Rocstar

Invoke CMake to configure Rocstar with the following command.
> cmake ${ROCSTAR_SOURCE}

Any errors in this step (e.g. failing to find TPL or compilers) must be resolved before
continuing. If there are no errors then Rocstar can now be built with the following command.
> make

Building Rocstar can take a while (e.g. approximately 20 minutes on a modern workstation).
Once the build is complete with no errors, then Rocstar will be ready for testing. Before
testing, the following environment should be set.

PATH=${ROCSTAR_BUILD}/bin:${PATH}
LD_LIBRARY_PATH=${ROCSTAR_BUILD}/lib:${LD_LIBRARY_PATH}

Note that if parallel runs through a batch system or on a cluster are planned, then these
environment modifications should be available in the default shell so that the runtime system
will be able to find the required Rocstar executables and libraries.

3 Test Rocstar

These are just a couple of very quick tests to make sure Rocstar has been properly built and
installed. Create a directory in which to test Rocstar and set an environment variable to
indicate where it is. This path is arbitrary.

ROCSTAR_TESTING=/path/to/rocstar/testing

> mkdir ${ROCSTAR_TESTING}
> cd ${ROCSTAR_TESTING}

3.1 Quick Test

This quick test will just make sure that Rocstar can find and load all of its modules and
that all paths are set properly.
> cp ${ROCSTAR_SOURCE}/Control/RocstarTest.txt ./RocstarControl.txt
> rocstar

This should print some splash information to the screen, and return without errors. If Rocstar
returns errors, please check your installation procedure and environment against the above
instructions. Note that warnings are OK and unavoidable at this stage. We only check
to see if the built modules can be located and dynamically loaded. As long as there are no
errors, then this test has succeeded.

7

Illinois Rocstar LLC Rocstar Quickstart Guide

3.2 Automated Testing

Rocstar comes pre-packaged with a set of automated tests implemented with IRAD and
CTest (included with CMake). These tests can be invoked from the command after the
compilation is complete.
> make test

The test results are reported to the screen.

3.3 Rocket Test

This example will test a subset of Rocstar preprocessor codes and a quick runtime example
of a burning rocket. To preprocess the data, enter the following command.

> rocprep -A -b -u 1 1 -o 1 1 -n 4 -d ${ROCSTAR_EXAMPLES}/ACM -t ./ACM_4

This should return with no errors and should have created the ACM_4 directory. If not, then
something has gone wrong with the install. If so, cd into the ACM_4 directory to continue
the test.
> cd ACM_4

Here you will find a RocstarControl.txt file. Edit the control file with your favorite editor
and change the FluidModule line from Rocflo to Rocflu.
Next, edit the Rocflu/Modin/ACM.inp file and change the ORDER parameter in the NUMERICS
section from 2 to 1. This tells Rocflu to run in 1st order mode instead of 2nd order mode.
From the top level ACM_4 directory, start Rocstar in parallel on 4 processors with the following
command.
> mpirun -np 4 rocstar

This should run the Attitude Control Motor (ACM) using the Rocflu fluid module, which
tests a large number of Rocsar functionalities. If running through a batch system, or if the
runtime system has trouble finding the rocstar executable in parallel, then it can be linked
to the current directory with the following command.
> ln -s ${ROCSTAR_BUILD}/bin/rocstar .

and then run with
> mpirun -np 4 ./rocstar

If running through a batch system, or on a system that does not allow direct invocation of
mpirun, then alter the above commands with a parallel job spawning mechanism supported
by your platform.

8

	Introduction
	Installation
	Prerequisites and Third-Party Libraries
	Obtaining Rocstar
	Preliminaries
	Build Rocstar

	Test Rocstar
	Quick Test
	Automated Testing
	Rocket Test

