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C H A P T E R  1  

 
INTRODUCTION 

 

ROCSOLID is an implicit finite element code to solve very large scale, 3D structural 

mechanics problems subjected to static and dynamic loads. ROCSOLID is under continuing 

development as a research code and has the following capabilities: 

• A small-strain plasticity model based on rate independent von Mises material 

model with the associated flow rule utilizing a bilinear uniaxial material response 

in addition to linear elasticity exists in this version of ROCSOLID. 

• Eight node hexahedral elements are used. This element is designed for the small-

strain plasticity model and uses the consistent material tangent operator (to pre-

serve the quadratic convergence rate when the Newton nonlinear solver is called). 

The B-bar integration rule is used to avoid locking for near incompressible condi-

tions. 

• Dynamic problems are solved using the implicit Newmark time integrator. 

• The linear matrix equations encountered at each time step are solved using a scal-

able parallel multigrid solver. The preconditioned conjugate gradient method is 

used as the relaxation scheme. All of the main components in the multigrid solver 

are implemented in an element-by-element framework. Matrix free element level 

computations are used to reduce the storage and CPU time. 
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• During each multigrid solution, interprocessor communications are performed in 

matrix-vector multiplications, scalar products and fine-to-coarse mesh restric-

tions. Nonblocking MPI communication routines are used to perform point-to-

point communications. 

• ALE formulation is used for moving interfaces. 

• Mixed-enhanced elements are used for shell elements. 

• ROCSOLID uses unstructured meshes. Truegrid is used to produce a sequence of 

nested, uniformly refined hexahedral meshes. Mesh partitioning is performed on 

the coarsest mesh using Metis to achieve perfect load balance between the proces-

sors. Uniform refinement of the coarsest mesh partitions produces the required 

partitions on all of the fine meshes. Thus, perfect element load balance is main-

tained through the mesh hierarchy, although the resulting communication pattern 

may not be optimum. The files generated by Truegrid are processed by another 

software to generate the necessary input files for ROCSOLID. 

 

The following chapters describe algorithms and features of ROCSOLID, organization of 

the code, data structure, interface with GEN* and implementation details. 
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C H A P T E R  2  

NONLINEAR STRUCTURAL DYNAMICS 

2.1 Solution Algorithm for Nonlinear Dynamics Problems 

The weak formulation of equilibrium equations (virtual work statement) expressed on 

the current configuration is given by 

 

     

!!
T

!dV ! !u
T

b dV

V

"
V

" ! !u
T

t d" = 0

"

" , (2.1) 

where ! å  and ó  are the virtual rate of deformation vector and the Cauchy stress vector re-

spectively, !u  is the virtual displacement field, b  is the body force vector per unit volume 

in the deformed configuration (which may well include the acceleration effects), t  defines 

the tractions applied to the surface of the deformed model. V and ! are the volume and the 

external surface at the current configuration. Inertial D’Alembert forces arising from accel-

erations are 

 !=!b u!!  (2.2) 

where !  and u  are the mass density and displacement field in the deformed configuration, 

respectively. Discretization of the structure using the standard finite element method [20, 21] 

yields a set of equations of motion of the form 

 ,Mu Cu Ku f!! !+ + =  (2.3) 
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where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 

structure. The time dependent vectors f and u represent the external load applied to the struc-

ture and the resulting displacement response measured at the degrees-of-freedom of the 

model, respectively. The product Ku  is the internal force at the current configuration and is 

given by 

 

     

P(u) = Ku = !!
eT

!
e

dV

V
e

!
e

" = B
eT

!
e

dV

V
e

!
e

" ,  (2.4) 

where the summation symbol implies a standard assembly process, the superscript e  denotes 

element quantities, and e

B  is the element strain-displacement operator. 

Researchers have developed several explicit and implicit methods to solve equation (2.3) 

[1], all of which compute u  at a sequence of time intervals t!  apart by making some as-

sumptions regarding the changes in u  and its derivatives over the time step. To establish an 

implicit formulation we adopt the Newmark method [19]. 

2.1.1 Newmark’s Method Applied to the Governing Equations 

This method is essentially a family of methods that are extensions of the linear accelera-

tion method (which assumes acceleration is linear in each time step). We can write the veloc-

ity and displacement vectors at time t t!+  as 

 
     
!u

t+! t
= !u

t
+ (1!" )!!u

t
+ " !!u

t+! t

"
#$

%
&'
!t  (2.5) 

and 

 
     
u

t+! t
= u

t
+ !u

t
!t + (1 2!")!!u

t
+ " !!u

t+! t

"
#$

%
&'
!t

2
,  (2.6) 

where the parameters !  and !  specify the method. For example, the linear acceleration 

method is produced by selecting 1 2! =  and 1 6! = . The Newmark method is uncondi-

tionally stable when !  is greater than 1/2 and !  is greater than   (1 2 + ! )
2

4 . The most 

widely used choice is 1 2! =  and 1 4! = , which is unconditionally stable and does not in-

troduce any artificial damping into the solution. 
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When equation (2.3) is linear, manipulation of Equations (2.3) to (2.6) produces the fol-

lowing time integration algorithm: 

i. Given the initial displacement and velocity, compute the initial acceleration from Equa-

tion (2.3). 

ii. Compute the displacement at time t t!+  from 

    

1

!t
2

M +
"

!t
C + #K

!

"

#
#
#

$

%

&
&
&

u
t+! t

= # f
t+! t

+
1

!t
2

M +
"

!t
C

!

"

#
#
#

$

%

&
&
&

u
t
 

     

+
1

!t
M + (" !#)C

"

#

$
$

%

&

'
'
!u

t
+ (1 2!#)M +

!t

2
(" !2#)C

"

#

$
$

%

&

'
'
!!u

t
.  (2.7) 

iii. Compute the acceleration at time t t!+  from 

 
     

!!u
t+! t

=
1

"!t
2

u
t+! t
!u

t

"
#$

%
&'
!

1

"!t
!u

t
!

1

2"
!1

"

#

$
$

%

&

'
'
!!u

t
. (2.8) 

iv. Compute the velocity at time t t!+  from Equation (2.5). 

v. Advance the time, and repeat steps (ii) to (iv) until the required time history has been 

computed. 

We can now incorporate the above algorithm into a conventional nonlinear solver, e.g., 

the Newton procedure, to be able to solve equation (2.3) when it is nonlinear. Assuming zero 

damping, this would yield the following system of linear equations at Newton iteration k  to 

advance the solution from time t  to time t t!+  

 
    

1

!"t
2

M + K
T

(k )
!

"

####

$

%

&&&&&
"u

(k )
= f

t+"t
' i

t+"t

(k )
' 1

!"t
2

Mu
t+"t

(k )   

 
     

+
1

!"t
2

Mu
t
+

1

!"t
M !u

t
+ ( 1

2!
!1)M!!u

t
.  (2.9) 

In this equation, ( )k

T
K  is the (consistent) tangent stiffness matrix and ( )k

t t!
i
+

 is the internal 

forces defined by equation (2.4) for the current iteration and ( )k
!u  is the correction to the 

displacement increment within the Newton solve. The right hand side represents the force 

imbalance (residual) from the previous iteration. 
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Figure 2.1 summarizes the steps involved to advance the solution in implicit nonlinear 

analysis. Before starting the Newton iterations, the effective load increment and its norm (to 

be used in the convergence check) need to be calculated. From Equation (2.9) the effective 

load increment is given by 

 
     

f
t+!t

eff
= f

t+!t
+

1

"!t
2

Mu
t
+

1

"!t
M !u

t
+ ( 1

2"
!1)M!!u

t
 (2.10) 

The consistent tangent stiffness for the structure and the updated residual form a system of 

linear equations, which have to be solved to get the new correction to the displacement in-

crement. Strains, stresses and the internal force vector can be updated next using the cor-

rected displacement increment. A new residual can be calculated from the revised internal 

force vector and effective loads. When residuals meet the convergence criteria, velocities and 

accelerations for the current time step can be computed from the converged displacements 

and the solution for the last time step. An efficient implementation of different steps involved 

in this algorithm is discussed in Chapter 4. Matrix-vector multiplies are implemented using 

an element-by-element framework and a matrix-free approach is used to decrease storage and 

CPU time. 

Most of the computational effort is required by the solution of the system of linear equa-

tions encountered in the solution algorithms described so far (e.g., Equation (2.9)). 

ROCSOLID is designed to solve theses equations using a parallel multigrid algorithm on a 

variety of multi-processor systems. For ease of notation, we rewrite these equations as 

 Ax = b  (2.11) 

where, in case of Equation (2.9) for example, 

 ( )

2

1 k

T

t!"
A M K= +  (2.12) 

 ( )k
!x u=  (2.13) 

and 

    

b = f
t+!t

eff
! i

t+!t

(k )
!

1

"!t
2

Mu
t+!t

(k )
.  
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In order to calculate the internal forces and the tangent stiffness matrix, the stresses must 

also be computed after each iteration. Further details are given in the next section. 

2.2 Material State Determination 

The next step after computing the incremental displacement is obtaining the new mate-

rial state by calculating the strain and stress increments, and updating the stress-strain opera-

tor. The strains are obtained from displacements through the linear strain-displacement op-

erator B  

 .! !=å B u  (2.14) 

Computation of stress increments from strain increments (i.e. stress recovery) involves the 

material constitutive relationship. In this study, we restrict attention to a small-strain plastic-

ity model based on rate independent von Mises material model with the associated flow rule 

utilizing a bilinear uniaxial material response, although other material models can easily be 

incorporated into this approach. Both isotropic and kinematic hardening are considered. The 

stresses are updated using the elastic predictor, radial return algorithm using a path independ-

ent strategy, which leads to greater accuracy and a reduction in the computational work. 

2.2.1 Stress Recovery 

The Mises yield surface is described by the equation 

 2
0 ,

2

ij ij
r

! !! !
" =  (2.15) 

where ij
! !  is the deviator relative stress and r  is proportional to the radius of the yield surface 

in the !  plane (Figure 2.2). The deviator relative stress is given by 

 ,
ij ij ij

a! "! != "  (2.16) 

where deviatoric stress ij
! !  is defined by 

3

kk
ij ij ij

!
! ! "! = "  and ij

a  designates the center of 

the yield surface (i.e., the back stress). The strain increment ij
!"  is decomposed into elastic 

and plastic components by the equation 

 .
e p

ij ij ij
!" !" !"= +  (2.17) 
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In an associated flow rule, the plastic potential and the yield function are equal [18, 33, 

34]. Therefore, the plastic strain increment may be expressed as 

 ,
p

ij ij
n!" #=  (2.18) 

where ij
n  is the unit normal tensor and !  is a constant that depends on the stress increment. 

By defining ( ) ( ) ( )
ij ij ij
=  as the norm associated with a tensor, the unit normal tensor is 

given by 

 .
ij

ij

ij

n
!

!

!
=

!
 (2.19) 

Equation (2.18) shows that during plastic flow at a material point, the plastic strain increment 

is proportional to the outward normal to the yield surface defined by Equation (2.15). As a 

consequence of this flow rule, p

kk!" , the change in plastic volume with time, is zero; the de-

viator plastic strain rate is therefore equal to the plastic strain rate (i.e., the yield function is 

independent of the hydrostatic stress state). 

The equivalent plastic strain and the equivalent stress are 

 2

3

p P P

ij ij!" !" !"=  (2.20) 

 
2

3 ,J! !=  (2.21) 

where 
2

1

2
ij ijJ ! !! ! !=  . The plastic modulus H !  is defined as the derivative of the equivalent 

stress with respect to the equivalent strain, which for a Mises yield surface with a bilinear 

uniaxial stress-strain diagram is given by 

 .
T

T

EE
H

E E
!=

"
 (2.22) 

E  and 
T
E  are Young’s modulus and the tangent modulus, respectively. 

Along with Equation (2.18), the following defines the evolution equations for the mate-

rial, 
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 2 (1 )
3

p

ij ija H! " !#!= "  (2.23) 

 2

3
r H! " #!=  (2.24) 

 2 ( )
p

ij ij ijG!" !# !#! ! != "  (2.25) 

 .kkp K! !"=  (2.26) 

The computational parameter !  takes the values from zero to one; it is set to zero or one for 

purely kinematic or purely isotropic hardening, respectively. For mixed hardening, !  takes 

values between zero and one. The parameters K and G are the bulk and shear moduli of the 

material and p is the hydrostatic stress. 

The incremental constitutive equations must be numerically integrated to compute the 

new set of stresses corresponding to the new displacements. The elastic predictor, radial re-

turn algorithm is used to accomplish this [8, 18]. This procedure enforces the consistency 

condition, thereby constraining the stress point to remain on the yield surface during flow. 

Given the state of stress at step n, the hydrostatic stress and the elastic predictor trial deviator 

stress at step n+1 are computed as 

 1n n

kkp p K!"
+

= +  (2.27) 

 1
2 ,

n t n t

ij ij ijG! ! "#
+
! ! != +  (2.28) 

and the trial deviator relative stress at step n+1 is defined by 

 1 1

.
n t n t n

ij ij ij
a! "

+ +
! != "  (2.29) 

If the material point is elastic, the stress recovery is essentially complete at this stage. Only 

the trial deviator stress and the hydrostatic stress need to be recombined. But if the material 

point is in the state of plastic flow, the trial deviator stress is modified by a stress increment 

corresponding to a radial return to the yield surface. Using Equation (2.25), the updated de-

viator stress at step n+1 can be calculated; 

 1 1
2 ,

n n t

ij ij ijG n! ! "
+ +
! != "  (2.30) 

and Equations (2.23) and (2.24) give 
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 1 2 (1 )
3

n n

ij ij ija a H n! "
+

!= + "  (2.31) 

 1 2
.

3

n n

r r H! "
+

!= +  (2.32) 

Also, Equation (2.15) is rewritten as 

 1 1

2 0 .
n n

ij
r!

+ +
! " =  (2.33) 

The deviator relative stress at step n+1 is computed by combining Equations (2.30) and 

(2.31). The resulting equation is manipulated to give 

 

   

! =

n+1 !"
ij

t
" 2

n
r

2G 1+
!H

3G

#

$
%%%

&

'
(((

.  (2.34) 

It is possible to compute the parameter !  directly because H !  is a constant which 

means that the equivalent stress is a linear function of the equivalent plastic strain. When this 

function is nonlinear, it would be necessary to iterate to determine ! . Figure 2.3 summarizes 

the steps involved in the stress recovery process using the elastic predictor, radial return algo-

rithm. 

Nonlinear problems can be either solved by linearizing the equations and using New-

ton’s method or by solving the nonlinear equations directly using some appropriate nonlinear 

relaxation technique (e.g., the full approximation storage method, [15]). There are several 

potential difficulties associated with using nonlinear relaxation techniques especially when 

history-dependent nonlinear problems are considered. For example, spurious loading and un-

loading may be produced by nonlinear relaxation that would introduce unacceptably high er-

rors. Also, when the multigrid method is considered, the material state variables would have 

to be continuously updated on all of the meshes after each relaxation sweep. Thus, the first 

approach, linearizing the equations and using Newton’s method, will be considered in this 

research. A discussion of a full approximation storage multigrid method applied to elasto-

plasitcity problems can be found in reference [16]. 

Newton iterations can be used to trace the equilibrium path up to a critical point. Often, 

in order to understand the behavior of a structure, we need to be able to pass the critical 
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points and continue to trace the equilibrium path after these points. Arc-length continuation 

methods will be used in this study for this purpose [17]. The following section describes this 

method. 

2.3 Arc-length Continuation Methods 

The equilibrium equation for a structure can be written as 

 0( ) ,P !u f=  (2.35) 

where ( )P u  is the internal force (a nonlinear history dependent function of u , the displace-

ments), !  is the load parameter and 
0
f  is the normalized load pattern. Proportional loading 

is considered; the size of the external forces is controlled by the load parameter ! . Figure 2.4 

shows the ( , )!u  relationship for a single degree-of-freedom demonstration problem. The 

goal is to determine the equilibrium state 1 1( , )
n n

!u
+ +

 after the equilibrium state ( , )
n n
!u  is 

known. Arc-length continuation methods treat both the magnitude of the loading and the dis-

placements as unknowns and solve the problem in 1N +  dimensional ( , )!u  space. We have 

N equilibrium equations, i.e., 

 0( , ) ( ) 0 .P! !F u u f= ! =  (2.36) 

We need one more equation, a scalar constraint equation for u  and ! , e.g., 

 2 2 2
( , ) ( ) 0 ,

n n
C s! ! ! "u u u= ! + ! ! =  (2.37) 

where s!  is the specified arc length. An iterative solver can be generated by linearizing 

(2.36) and (2.37) about ( , )
n n
!u  : 

 
     
F(u,!) ! F(u

n
,!

n
) +
!F

!u
"u +

!F

!!
"! ,  (2.38) 

and 

 
     
C(u,!) ! C(u

n
,!

n
) +
!C

!u
"u +

!C

!!
"! .  (2.39) 

Noting that 
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!F

!u
=
!P

!u
= K

t
|

u
n

,  (2.40) 

where |
n

t
K

u
 is the tangent stiffness matrix at the equilibrium configuration ( , )

n n
!u , 

 
   

!F

!!
=" f

0
,  (2.41) 

 
   

!C

!!
= 2(!"!

n
) ,  (2.42) 

and 

 
    

!C

!u
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we would need to solve the system of equations 
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Now we can update the displacement and load vectors, 

 ( 1) ( ) ( )
,

i i i

!u u u
+

= +  (2.45) 

 ( 1) ( ) ( )
.

i i i

! ! "!
+

= +  (2.46) 

Iteration is continued until ( ) ( )
( , )

i i

n n
F !u  and ( ) ( )

( , )
i i

n n
C !u  are small. In the above algorithm, 

equation (2.44) must be solved at each iteration, which involves an    (N +1)!(N +1)  non-

symmetric matrix with a strange structure. By using the bordering algorithm the solution of 

equation (2.44) can be simplified. First we solve the following two equations for 
1
x  and 

2
x  : 

 
1 0t

K x f=  (2.47) 

and 

 ( ) ( )

2 ( , ) ,
i i

t
K !x F u=  (2.48) 

then compute ( )i
!"  and ( )i

!u  from 
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and 

 ( ) ( )

1 2 .
i i

! !"u x x= !  (2.50) 

2.4 Nonlinear Kinematics (ROCSOLID 3.2) 

Large deformations are formulated using strains-stresses and their rates defined on an 

unrotated frame of reference. This model predicts physically acceptable responses for homo-

geneous deformations of exceedingly large magnitude. The implemented numerical algo-

rithm is suitable for the large strain increments, which may arise in the implicit solution of 

the global equilibrium equations, employed in ROCSOLID. The finite rotation effects on 

strain-stress rates are separated from integration of the rates to update the material response 

over a time step. Consequently, all of the numerical routines developed previously for small-

strain material models can be utilized without modification. In ROCSOLID 3.2 the j2 plastic-

ity model can not yet use this large strain capability and for now only large deformations can 

be employed for linear elastic materials. 

This formulation is also adopted in large-scale finite element codes, including NIKE, 

PRONTO, DYNA, ABAQUS-Standard and ABAQUS-Explicit. An extensive description of 

the numerical implementation details can be found in the monograph of Simo and Hughes, 

Elastoplasticity and Viscoplasticity: Computational Aspects (Stanford University, 1988). 

2.4.1 Definitions 

The deformation gradient is defined by 

    F = !x / !X , det(F ) = J > 0  (2.51) 

where x denotes the position vectors for material points at time t and X is the position vectors 

for material points defined on the configuration at t = 0. The displacements of the material 

points are thus given by 

 u x X= !  (2.52) 
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The polar decomposition of F yields 

 F VR RU= =  (2.53) 

where V and U are the left and right-symmetric, positive definite stretch tensors, respectively 

and R is an orthogonal rotation tensor. The principal values of V and U are the stretch ratios 

of the deformation. We define an orthogonal reference frame at each material point such that 

the motion relative to these axes is only deformation throughout the loading history. For the 

RU decomposition for example, these axes do not follow the deformation (they are spatial) 

when applying tensor U and they do follow the deformation when tensor R is applied. Strain-

stress tensors and their rates referred to these axes are said to be defined in the unrotated con-

figuration. 

The spatial gradient of the material point velocity v x!=  with respect to the current con-

figuration is given by 

 
    

L =
!v

!x
=
!v

!X

!X

!x
= !FF

"1  (2.54) 

We define D as the spatial rate of deformation tensor and the symmetric part of L and the 

skewsymmetric part, denoted W, is the spin rate or the vorticity tensor. W represents the rate 

of rotation of the principal axes of the spatial rate of deformation D.  

 L D W= +  (2.55) 

where 

 
   
D = 1

2
L + L

T( ); W = 1

2
L! L

T( ) (2.56) 

When W is integrated over the loading history, the principal values of D are defined as 

the logarithmic (true) stains of infinitesimal fibers oriented in the principal directions if these 

directions do not rotate. D and W are instantaneous rates and do not sense the deformation 

history. Using the following relations, 

 F RU RU! ! != +  (2.57) 

and 

 ( )
11 1 1 1 T

F RU U R U R
!! ! ! !

= = =  (2.58) 
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The spatial gradient L may be also written in the form 

 1T T

L RR RUU R! ! !

= +  (2.59) 

The symmetric part of the second term in the last equation is called the unrotated defor-

mation rate tensor or d 

 ( )1 11
.

2
d UU U U! !! !

= +  (2.60) 

Using the orthogonality property of R the unrotated deformation rate can also be shown 

in the following form 

 .
T

d R DR=  (2.61) 

The spatial rate of deformation, D, and the symmetric Cauchy (true) stress, !  are work 

conjugate in the sense that work per unit volume in the current configuration is given by 

ij ijD! . Components of both D and !  are defined relative to the fixed, global axes. There-

fore, the unrotated Caushy stress t may be given by 

 T

t R R!= . (2.62) 

2.4.2 Computational Steps 

Using an incremental iterative Newmark method the global solution is advanced from 

time 
n
t  to 

1n
t
+

. Iterations denoted as i  are needed to remove unbalanced nodal forces. At 

each iteration a new estimate for the total displacements at 
1n

t
+

, shown as ( )

1

i

n
u
+

, is calculated. 

A mid-increment scheme is adopted in which deformation rates are evaluated on the inter-

mediate configuration. 

1- The deformation gradient at n + ½ and n + 1 is computed 

2- Compute polar decomposition of the above deformation gradients 

 ( ) ( ) ( )

1 1 1.
i i i

n n n
F R U
+ + +
=  (2.63) 

 ( ) ( ) ( )

1/ 2 1/ 2 1/ 2.
i i i

n n n
F R U
+ + +
=  (2.64) 

3- Using the B matrix for the element, compute the ith estimate for the spatial deforma-

tion 
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 ( )( ) ( ) ( )

1/ 2 1

i i i

n n n
B u u!" + += !  (2.65) 

This procrdure enable us to use the B-bar formulation for finite strains thereby reducing 

volumetric locking in the element. 

4- Rotate the increment of spatial deformation to the unrotated configuration 

 ( ) ( ) ( ) ( )

1/ 2 1/ 2. .
Ti i i i

n n
d R D R! !

+ +
=  (2.66) 

5- The conventional small strain models can now be used to compute the unrotated 

Cauchy stress at n + 1. The terms of the spatial deformation tensor is used as the 

strain increment. 

6- The Cauchy stress is computed from transformation of the unrotated Cauchy stress at 

n + 1 

 
1 1 1 1

T

n n n n
R t R!

+ + + +
=  (2.67) 

The calculated Cauchy stress is required for subsequent computation of element internal 

forces. 

2.5 New Material Models (ROCSOLID 3.4) 

Some architectural changes needed to be made in order to make the process of imple-

menting new material models easier. The element level calculations included the material 

contributions in a matrix-free format that although were helpful in improving the perform-

ance, it did not have the required modularity. Therefore, by relaxing the matrix-free condition 

for the material contributions and adopting a UMAT approach achieved a significant im-

provement for material models implementation. 

Three new material models are now available. They are compressible and incompressi-

ble Neo-Hookean and porous viscoelastic (with void growth) material models. The porous 

viscoelastic model can be used in the framework of the nonlinear kinematics described above 

which enables to simulate large rotations. 
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Figure 2.1: Steps in Solution for Implicit Nonlinear Analysis. 

 
Loop over time: 
       Calculate the effective load increment and its norm 
        Loop over Newton iterations: 
             Solve 
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             Increment displacements 
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              Update strains, stresses and internal force vector 
             Compute residual force vector and its norm 
              Test convergence 
        End loop over Newton iterations 
       Compute velocities and accelerations 
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End loop over time 
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Figure 2.2: Mises Yield Surfaces in Principle Stress Space. 
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Figure 2.3: Elastic Predictor, Radial Return Algorithm for Bi-
linear (Mises) Material Model. 
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             Update hydrostatic stress 1n n
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+
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kkp p K!"
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Figure 2.4: The Arc-Length Continuation Method for a Single 
Degree-of-Freedom System. 
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C H A P T E R  3  

THE MULTIGRID ALGORITHM FOR LINEAR EQUATIONS  

This chapter describes the multigrid method we employ for solving the linear matrix 

equations encountered at each iteration in the solution algorithm explained in the previous 

chapter. Detailed descriptions of the method can be found in [12, 15, 13, 22]. Implementa-

tions of this method to perform nonlinear analysis of structural engineering problems are 

rather rare. Particularly, implementation of these methods on distributed memory machines 

presents additional challenges, which are the main issues in this research. A Proper commu-

nications strategy between processors is developed to maximize the performance of the solu-

tion algorithm.  

Multigrid algorithms are particularly appealing because the computational effort (CPU 

time and storage) required to solve a problem is linearly proportional to the problem size. 

This property, which has been both proven (e.g., [12]) and observed (e.g., [13, 14]), implies 

that the method is algorithmically scalable. We first review basic multigrid methods, and 

then describe the components that have been successfully used to solve structural mechanics 

problems discretized using the finite element method. 

3.1 The Basic Multigrid Algorithm 

The multigrid method combines relaxation on a fine mesh with the approximate solution 

of residual equations on coarser grids. Smoothing properties of basic iterative methods are 

used to quickly produce a smooth fine mesh error. A coarse mesh is then used to cheaply ap-
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proximate this error. In this section, multigrid methodology is briefly outlined by considering 

the solution of the generic linear matrix equation 

 ,f f f=A x b  (3.1) 

where fA  is a constant matrix, fb  is a constant vector and fx  contains the unknowns. Sub-

scripts f and c indicate a fine or a coarse mesh respectively in this description. Figure 3.1 il-

lustrates the steps involved in a simple two-grid method. 

A small number 1( )!  of relaxation cycles are first applied to rapidly reduce the high fre-

quency error associated with an initial approximate solution ( )k

fx  on the fine mesh. The new 

approximate solution, ( )k

fx , produced by the relaxation cycles has a smooth error and there-

fore can be approximated on a coarser mesh. The fine mesh residual, ( ) ( )k k

f f f fr b A x= !  is 

restricted to the coarse mesh to obtain the coarse mesh residual 

 ( ) ( )
,

k c k

c f fr I r=  (3.2) 

where c

fI  is the fine-to-coarse mesh restriction operator. The coarse mesh correction, ( )k

c
!x , 

which is intended to be a reasonable representation of the smooth fine mesh error is com-

puted by solving the coarse mesh correction equation 

 ( ) ( )
.

k k

c c c
!A x r=  (3.3) 

To obtain the fine mesh correction, ( )k

c
!x  is interpolated to the fine mesh using the coarse-to-

fine mesh interpolation operator, f

cI , i.e., 

 ( ) ( )
.

k f k

f c c! !x I x=  (3.4) 

The fine mesh correction is used to compute the new fine mesh approximate solution 

 ( ) ( ) ( )
ˆ .
k k k

f f f!= +x x x  (3.5) 

A small number 2( )!  of relaxation cycles are performed on the fine mesh to reduce any high 

frequency errors introduced by interpolation. This produces ( 1)k

fx
+ , the new estimate to the 

solution of equation (3.1). 
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These steps are repeated until a converged solution is obtained. Usually, the following 

criteria is used to determine convergence 

 
( )

|| ||

|| ||

k

f f f

tol
f

!
b A x

b

!
"  (3.6) 

where || . || indicates the Euclidean norm of a vector and 
tol

!  is the convergence tolerance 

specified by the user. 

The above two-grid algorithm can be extended to a true multigrid method by solving the 

coarse mesh correction equation (3.3) using one or more successively coarser meshes, i.e., 

the above two grid method can be recursively applied to this equation. It is generally neces-

sary to perform only a few multigrid iterations on the coarse grid to obtain a good approxi-

mation to the required coarse grid correction. The parameter !  is used to denote the number 

of cycles used on each coarse mesh to solve coarse mesh correction equation. Figure 3.2 

shows different multigrid algorithms that can be obtained depending on the number of 

meshes used and the value of ! . 

3.1.1 Multigrid Components 

The multigrid algorithm discussed above consists of four components: the fine mesh re-

laxation scheme, the interpolation operator, the restriction operator and the coarse mesh solu-

tion. The choice of these components is discussed in the following sections. These compo-

nents will be visited again in Chapter 4 when we discuss the parallel implementation of the 

algorithm. 

3.1.1.1 Relaxation Scheme 

A crucial component of any multigrid implementation is the choice of the relaxation 

scheme. Many basic iterative procedures can be chosen to perform relaxation, which rapidly 

eliminates the high frequency error components from the current approximate fine mesh so-

lution. The Jacobi preconditioned conjugate gradient method [37], outlined in Figure 3.3, is 

employed as the basic relaxation scheme in ROCSOLID. In this Figure, i  is the iteration 

count, r  specifies the residual, x  represents the unknown vector, p  defines the step direc-

tion, !  denotes the step length, and !  specifies the correction factor. This scheme has been 



30 30 

found to be a robust smoother for a variety of nonlinear structural mechanics problems. Tra-

ditional smoothers such as Gauss-Seidel relaxation are unsuitable for the class of problems 

we are interested in (see [13, 14] for additional details). Usually, five to ten relaxation cycles 

would be enough to economically smooth fine mesh errors. 

3.1.1.2 Interpolation and Restriction Operators 

A sequence of nested meshes is used in ROCSOLID for the multigrid solution algorithm 

for which nodal averaging of displacements is a natural selection for interpolation between 

fine and coarse meshes. In other words, the interpolation operator can be defined by applying 

constraints to the fine mesh degree-of-freedom. In Figure 3.4, four coarse mesh quadrilateral 

elements are refined once to form sixteen fine mesh elements. The fine mesh degrees-of-

freedom in terms of the coarse mesh degrees-of-freedom can be defined by the following 

constraints 

,
a a

f cu u=  

 1 2 ( ),
e a b

f c cu u u= +  (3.7) 

1 4 ( ),
f a b c d

f c c c cu u u u u= + + +  

where fu
!  is a fine mesh degree-of-freedom at node ! , and 

c
u

!  denotes the corresponding 

coarse mesh degree-of-freedom at node ! . The same approach can be extended to three-

dimensional elements. Thus, the coarse-to-fine mesh interpolation operator f

cI  can be repre-

sented as a matrix T  assembled on a coarse mesh element level using expressions such as 

Equation (3.7) so that 

 ( ) ( )
.

k k

f cx x! !T=  (3.8) 

Applying the principle of work equivalency between the fine and coarse meshes requires that 

the fine-to-coarse mesh restriction operator c

fI  be T

T , thus 

 ( ) ( )
.

k T k

c fr T r=  (3.9) 
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3.1.1.3 Coarse Mesh Solution 

The coarse mesh stiffness matrices must represent the deformation on the coarse mesh 

and can be computed by two different methods. Using the Galerkin coarse mesh stiffness ma-

trix is the first choice: 

 .
T

c fK T K T=  (3.10) 

In other words, the coarse mesh stiffness matrix can be defined from the corresponding fine 

mesh stiffness matrix using the interpolation and restriction operators. This approach has 

some difficulties associated with it, which will be mentioned later. In ROCSOLID, the alter-

native approach is used for coarse mesh solution that is to assemble the coarse mesh stiffness 

matrix from individual element stiffness matrices. The construction of 
c
K  in this case is in-

dependent of fK  and is given by 

 

   

K
c

= B
eT

V
e

!
e

" D
e

B
e

dV  (3.11) 

where the summation symbol implies a standard assembly process, the superscript e  denotes 

element quantities, and e

B  and e

D  are the appropriate coarse mesh element strain-

displacement and material matrices, respectively. This approach fits well in the element level 

implementation of the method discussed in Chapter 4. The Jacobi preconditioned conjugate 

gradient method is used to obtain the solution to the coarsest mesh correction equation. 

3.1.2 Treatment of History Dependent Problems 

As was mentioned before, we use the multigrid method as an equation solver embedded 

inside Newton (or arc-length) iteration. This approach involves linearization of the problem 

on the finest mesh and multigrid solution of the resulting linear matrix equation. Some modi-

fication of the linear multigrid solver described above are required. 

After each Newton iteration, in order to calculate the internal forces and the tangent 

stiffness matrix, the stresses must also be computed. Section 2.2 explained the method used 

in this study for a specific material model. To compute the tangent stiffness matrices for the 
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meshes involved in the multigrid solution, considering small deformations, we can use the 

following equation 

 

   

K
T

= B
eT

V
e

!
e

" D
T

e

B
e

dV . (3.12) 

   To preserve the quadratic convergence rate present in the Newton iteration, the consis-

tent element material tangent operator e

T
D  described in (Dodds 1987, Simo & Taylor 1985 

[8, 18]) must be used. Also, the B  operator is computed by the so-called B  method (Hughes 

[23]) to avoid locking for near incompressible conditions, which occurs in fully integrated 

elements. This method replaces dilatational terms of the original strain-displacement matrix 

by a volume-averaged set of dilatational terms. 

The coarse mesh state variables are associated with the fine mesh straining history. In-

stead of interpolating the fine mesh displacements to the coarse mesh and then integrating the 

constitutive law, which requires a large amount of computational work, we directly interpo-

late the fine mesh state variables to the coarse mesh. This means that the stress recovery pro-

cedure is only done on the finest mesh employed. More details are available in reference 

[24]. 

3.2 General Behavior of Multigrid Methods 

Multigrid methods are used for solving linear and nonlinear structural mechanics prob-

lems by some researchers and in this section, some important features of this algorithm are 

discussed. A more complete description of these features can be found in [12, 13, 15, 29]. 

Iterative solvers are generally sensitive to ill-conditioning and multigrid methods are no 

exception. An ill-conditioned problem can cause an increase in the number of cycles required 

for convergence, or even a complete failure to converge. The spectral condition number of a 

matrix A , defined by the following equation can be used to measure ill-conditioning, 

 1
( ) .!

!

=A A A  (3.13) 

where .  denotes the norm of a matrix. The matrices with higher condition numbers are 

more ill-conditioned and by definition,    ! ( A) =!  when A  is singular. The stiffness matrix 
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of a structure can become ill-conditioned when stiffnesses of widely varying orders of mag-

nitude are present. Nearly incompressible materials, small elements, thin shells and heteroge-

neous material properties are common causes of ill-conditioning. It is important to note here 

that successive refinements of a given mesh which generates smaller elements on each suc-

cessive mesh and therefore higher condition numbers, produce little or no increase in the 

number of multigrid cycles required to converge. 

The smoothing effect of the relaxation scheme can deteriorate in near incompressible 

conditions and this makes multigrid converge slower. Jacobi preconditioned conjugate gradi-

ent algorithm usually behaves better as a relaxation scheme in these cases and using more 

relaxation cycles on each mesh is also helpful. Using Equation (3.10) to compute the coarse 

mesh stiffness matrix can cause locking even when reduced integration is used to cure fine 

mesh locking [14, 24]. Therefore, explicit computation of the coarse mesh stiffness matrix is 

recommended. 

Large amounts of bending deformation also slow multigrid convergence, because the 

coarse meshes are generally too stiff. The possible solutions are using better elements [25] or 

using a higher value for ! . Special treatment should also be considered for problems with 

heterogeneous material properties. Some examples can be found in [26]. The interpolation 

procedure described in Section 3.1.1.2 does not work in these cases because a coarse element 

consists of fine elements with widely varying material properties.  
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Figure 3.1: Steps Involved in a Simple Two-Grid Method. 
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Figure 3.2: One Multigrid Cycle with Various Values of !  for 
Different Numbers of Meshes. 
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Figure 3.3: The Jacobi Preconditioned Conjugate Gradient Al-
gorithm. 
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Figure 3.4: Coarse Mesh Definition for Four Node Quadrilat-
eral Elements. 
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C H A P T E R  4  

MULTIGRID PARALLELIZATION 

The nonlinear multigrid solution algorithm for solving structural mechanics problems 

was outlined in the previous chapter. In this chapter, we describe the details of multigrid par-

allelization on distributed memory systems. The parallel implementation strategy is ex-

plained in the following section. We then review the multigrid components to identify the 

primary operations that require parallelization. A suitable algebraic framework is developed 

in Section 4.3 that helps us to determine correct parallel algorithms to perform computations 

in different stages of multigrid solution. The parallel programming model used to implement 

the proposed algorithm is then described, followed by a discussion of some implementation 

issues. Finally, the mesh generation technique used to produce the required hierarchy of in-

creasingly finer meshes and the partitioning method are discussed. 

4.1 Parallel Implementation Strategy 

The time to transfer data between processors is usually the most significant source of 

parallel processing overhead. An efficient algorithm for interprocessor communication needs 

to be adopted for a given program to minimize the amount of data that has to travel through 

the communication network of the machine, thereby reducing the total communication cost. 

The time taken for data transfer depends on the relative locations of the source and destina-

tion processors. Performance of a parallel program is determined by how well the location of 

data matches its use. 
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We adopt a domain decomposition strategy to parallelize the multigrid algorithm used in 

the implicit finite element solution method. This entails partitioning the finite element mesh 

into a number of domains and assigning the domains to individual processors of the parallel 

machine. Each processor is responsible for the elements within its own domain to perform 

the related computations concurrently with other processors. Appropriate communications 

are generally needed between the processors during the various multigrid components. 

In this strategy, the communication cost is reduced by increasing computation and com-

munication granularity, i.e., instead of performing the computation and communication one 

element at a time, computations for large number of elements inside domains is followed by 

communications between the domains. This is often called the surface-to-volume effect asso-

ciated with the domain decomposition techniques, which results in improved efficiency by 

decreasing the communication to computation ratio. Mesh generation and partitioning is dis-

cussed later in this chapter. 

4.2 Multigrid Components 

The multigrid algorithm discussed in the previous chapter consists of four components: 

fine mesh relaxation, interpolation, restriction and coarse mesh solution. We now review 

each of these components in turn, identifying the primary operations that require paralleliza-

tion. 

4.2.1 Fine Mesh Relaxation 

As explained in the previous chapter, the Jacobi preconditioned conjugate gradient 

method is our choice for the relaxation scheme. Figure 3.3 outlines this method and shows 

the following required primary operations at the ith iteration: 

vi. Matrix-vector multiplications, i.e., ( )i
Ap ; 

vii. DAXPYs, e.g., ( 1) ( 1) ( 1) ( )i i i i

!
+ + +

= +p d p ; 

viii. Scalar products, e.g., ( )( ) ( )
,

i i

p Ap , where ( ),
T

=x y x y ; 

ix. Preconditioning, i.e., ( 1) 1 ( 1)i i

D

+ ! +

=d A r , where 
D
A  is the diagonal part of A . 
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4.2.2 Interpolation and Restriction Operators 

Section 3.1.1.2, explained that the coarse-to-fine mesh interpolation operator f

cI  and the 

fine-to-coarse mesh restriction operator c

fI , can be represented as matrices T  and T

T  re-

spectively so that 

 ( ) ( )k k

f c! !=x T x  (4.1) 

and 

 ( ) ( )
.

k T k

c f=r T r  (4.2) 

The primary operations for the intergrid transfer operations then reduce to the matrix-

vector multiplications in Equations (4.1) and (4.2). 

4.2.3 Coarse Mesh Solution 

The coarse mesh stiffness matrices are assembled from the coarse mesh element matri-

ces (Section 3.1.1.3), and the Jacobi preconditioned conjugate gradient method is used to ob-

tain the solution to the coarsest mesh correction equation. Hence, the primary operations re-

quired by the coarse mesh solution are identical to those identified in Section 4.2.1. 

4.3 Basic Mesh Operations 

Before detailing the distributed implementation of the multigrid components, we first 

develop a suitable algebraic framework. Consider a finite element mesh R  with a total of n  

degrees-of-freedom that is partitioned in an element-wise fashion into 
D
n  domains, 

, 1,...,
D

i n=
i

D , such that domain 
i

D  has 
i
n  degrees-of-freedom, 

    !
! " #

$
i=1

n
D

!  and 
    !
!
"
=!

i=1

n
D

!  

(e.g., Figure 4.1 for a 16 element mesh partitioned into 4 domains). Note that 
i
n  is not neces-

sarily the same for each domain. Assume that any vector,     x !!
n , defined on this mesh is 

partitioned so that each domain receives the components of the vector that belong to the de-

grees-of-freedom present in the domain. These components are stored in vectors 
    
x

i
!!

n
i  

that are local to each domain 
i

D . We construct our algorithm so that we operate on the do-
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main vectors independently, rather than the global vectors. For each domain, we can define 

mapping and weighting matrices (
i

M  and 
i

W , respectively) such that 

 =
T

i i
x M x  (4.3) 

and  

 
    

x = M
i
W

i
x

i

i=1

n
D

!  (4.4) 

where 
    
M

i
!!

n"n
i  and 

    
W

i
!!

n
i
"n

i . For example, consider Figure 4.1. Here 

   

M
1

=
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and 

   

W
1

=

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 2 0 0 0

0 0 0 0 0 0 1 2 0 0

0 0 0 0 0 0 0 1 2 0

0 0 0 0 0 0 0 0 1 4

!

"

#
#
#
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#
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#

$

%
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The mapping matrix 
i

M  is a Boolean operator that maps variables on 
i

D  into their correct 

locations in the global vector. The weighting matrix 
i

W  accounts for the number of times a 

variable is stored on different domains. Since we are considering an element-level partition-

ing of the mesh, the domain mapping matrices can also be used to assemble a matrix that has 

been computed on each of the domains, i.e., 

 
    

A = M
i
A

i
M

i

T

i=1

n
D

!  (4.5) 

where A  is the global matrix and 
i
A  are the domain contributions to A  that are assembled 

from e

i
A  in the usual way. This is identical to the standard procedure used to assemble ele-

ment stiffness matrices. 

4.4 Algorithm Implementation 

In the following sections, the above algebraic framework is applied to the primary opera-

tions identified earlier. Equations (4.3), (4.4) and (4.5) allow us to determine correct parallel 

algorithms for computing matrix-vector products and scalar products on a single mesh; ex-

tensions of these ideas lead to similar algorithms for the intermesh transfer operators. 

4.4.1 Matrix-Vector Multiplications 

Consider the matrix-vector product =q Ax  that is required on a single partitioned mesh. 

Using Equations (4.3) and (4.5) 

=q Ax  

                            

    

= M
i
A

i
M

i

T

i=1

n
D

!
"

#

$$$$$$

%

&

'''''''
x   

                                      
    

= M
i
A

i
x

i

i=1

n
D

!  (4.6) 

However, on 
i

D  we need to store iq  where, from Equations (4.3) and (4.6), 
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=
T

i iq M q  

                          

    

= M
i

T
M

j
A

j
x

j

j=1

n
D

!  (4.7) 

The product T

i jM M  is a communication matrix that transfers variables from jD  to 
i

D . This 

can be seen through the following argument. The product j jM x  for any 
    
x

j
!!

n
j  that is de-

fined on jD  produces 
    
M

j
x

j
!!

n , the vector that represents the global version of jx . Then 

    
M

i

T
M

j
x

j
!!

n
i  is a vector defined on 

i
D  that contains the components of jx  that also ap-

pear on 
i

D . This process is illustrated in Figure 4.2. Noting that 
    
M

i

T

M
i
= I

i
!!

n
i
"n

i , the 

identity matrix defined on 
i

D , Equation (4.7) becomes 

 

    

q
i
= A

i
x

i
+ M

i

T
M

j
A

j
x

j

j=1

j!i

n
D

" . (4.8) 

Thus, the computation of domain versions of the matrix-vector product Ax  is a two-

stage process. First, the product 
i i
A x  is computed on all of the domains, 1,...,

D
i n= . Sec-

ond, transfer of data between the domains is required to map inter-domain boundary data us-

ing the mapping matrices. This data transfer is local, i.e., data is transferred to 
i

D  only from 

domains that share degrees-of-freedom with 
i

D . 

In the multigrid algorithm, most of the effort is spent in computing the matrix-vector 

products required in the PCG relaxations. These computations can account for as much as 

95% of the total CPU time [24]. Therefore, this operation has to be implemented in the most 

efficient way. 

In each domain, the element-by-element strategy is used to perform all of the necessary 

matrix-vector multiplications and to compute the residual loads on the finest mesh. This ap-

proach reduces the storage required because no structure matrices need to be assembled and 

stored. This method uses a node-element domain data structure, which requires gather-scatter 

procedures. Matrix-free element level computations are implemented in this element-by-
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element framework. An alternative approach, which will not be discussed here, is to con-

struct the sparse form of the system matrix locally for each domain and compute the matrix-

vector products 
i i
A x  followed by a gather operation over all domains to get the final result. 

This might reduce the operation count and the required CPU time but will increase the mem-

ory demand that might not be desirable, especially for distributed systems. 

The computation of 
i i
A x  for each domain depends on the system matrix of the problem 

at hand. For example, in case of a dynamics problem (Chapter 2), 

 
2

1

t!"
= +

i i i
A M K . (4.9) 

Recognizing that 
   

M
i
= M

i

e

e

!  and 
   

K
i
= K

i

e

e

! , where the superscript e  denotes ele-

ment quantities and the summation implies assembly of element quantities, we can write 

 

   !

M
i
x

i
= M

i

e

x
i

e

e

! = !N
T

N x
i

e

dV

!
e

"
"

!  (4.10) 

and 

 

   !

K
i
x

i
= K

i

e

x
i

e

e

! = B
T

DB

!
e

" x
i

e

dV

"

!  (4.11) 

where !  is the material mass density, N  is the element shape function, B  is the element 

strain-displacement matrix, D  is the element material matrix, and integration is performed 

over the region occupied by the element, e
R .  

The stages necessary to perform 
i i

K x  computation for example, are as follows (Figure 

4.3). First, the element version of 
i
x , e

i
x , is formed by gathering information from the do-

main 
i
x  vector. Second, e e

i i
K x  is computed at the element level and finally, the domain 

i i
K x  vector is produced by scattering the element quantities e e

i i
K x  to this vector. Usually, 

the elements are processed in blocks chosen to maximize code performance. The gathering 

and scattering of domain and element quantities is accomplished using assembly arrays. 
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This approach also admits a matrix-free implementation of the element level computa-

tions involving the mass and stiffness matrices (i.e., e e

i i
M x  and e e

i i
K x ), which offers storage 

and time savings [24, 29]. For example, the element level matrix-vector product e e

i i
K x  

(Equation (4.11)), is computed in the following four-stage process: 

i. Compute element pseudo-strains ! = e

i
Bx! , at each element Gauss integration point; 

ii. Compute element pseudo-stresses ! "= D !! , at the Gauss points; 

iii. Compute element pseudo-internal forces 
   
!f = B

T
!! , at the Gauss points; 

iv. Compute the product e e

i i
K x  as 

 
    

K
i

e
x

i

e
= w

l

!f
l

l

! , (4.12) 

where 
l
w  are the Gauss quadrature weights, and summation is implied over all of the Gauss 

points. The prefix pseudo indicates that these quantities are not directly related to any physi-

cal deformation.  

An alternative approach to perform the element level matrix-vector multiplications is 

computing and storing the upper halves of the element matrices and then performing the ma-

trix-vector products. The computational work involved in this strategy and the matrix-free 

approach can be compared for example in a problem with eight node brick elements and lin-

ear elastic, homogenous, isotropic material [29]. To compute the upper half of the element 

stiffness matrix explicitly, 6,624 operations are required where one operation represents the 

combined work of one multiplication and one addition. Computation of e e

K x  requires 576 

operations. However, using the matrix-free technique, 1,248 operations are required to com-

pute e e

K x  if full integration is used and only 312 operations if reduced integration is em-

ployed. The storage and time savings gained by matrix-free implementation play an impor-

tant role in producing a code for large-scale simulations. 
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4.4.2 Scalar Products 

Consider the scalar product ( ), =
T

x y x y  where ,
n

!x y !  are defined over the finite 

element mesh R. From Equations (4.3) and (4.4), 

    

x, y( ) = M
i
W

i
x

i
, y

i=1

n
D

!
"

#

$$$$$$

%

&

'''''''
 

          
    

= x
i

T
W

i

T
M

i

T
y

i=1

n
D

!   

         
    

= x
i

T
W

i

T
y

i

i=1

n
D

!  (4.13) 

Hence, scalar products are computed by first computing T T

i i ix W y  on each domain, and then 

performing a global sum over all of the domains. 

4.4.3 Preconditioner Computation 

Using Equation (4.5), the global diagonal preconditioner can be calculated by the fol-

lowing equation 

 
    

A
D

= M
i
A

D
i

M
i

T

i=1

n
D

! , (4.14) 

where 
iD

A  are the domain contributions to 
D
A . The information in 

D
A  and 

iD
A can be 

stored in vectors     a!!
n  and 

    
a

i
!!

n
i  respectively using 

 =
D

a A 1  (4.15) 

and 

 =
ii D i

a A 1 . (4.16) 

In these equations, vectors     1!!
n  and 

    
1

i
!!

n
i  are unit vectors. Equations (4.14), (4.16) and 

(4.3) allow us to modify Equation (4.15) as 
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a = M
i
A

D
i

M
i

T

i=1

n
D

! 1  

   
    

= M
i
A

D
i

1
i

i=1

n
D

!  

  
    

= M
i
a

i

i=1

n
D

!  (4.17) 

On the other hand, on each domain we need an updated version of 
i
a , 

i
a!  that takes into ac-

count the shared nodes across the processors. This vector, which is the domain version of a , 

can be calculated by 

 =
T

i i
a M a! . (4.18) 

Equation (4.17) can now be used to get 

     

!a
i
= M

i

T
M

j
a

j

j=1

n
D

!  

             

    

= a
i
+ M

i

T
M

j
a

j

j=1

j!i

n
D

" . (4.19) 

The data transfer across the domains is indicated by the product T

i jM M  in this equation. 

The diagonal preconditioner computation is easily implemented in our element-by-

element framework. Even though the system matrix is not assembled in our approach, using 

Equation (4.19) parallel computation of the diagonal preconditioner remains simple. By loop-

ing over the elements in its domain, each processor calculates the domain contribution to the 

diagonal of the global system matrix. Some inter-domain communication is then necessary 

using the communication operator T

i jM M  to update the values corresponding to the nodes 

shared across processors. This communication can be performed in the same manner ex-

plained above and shown in Figure 4.2. Once each processor has the updated version of the 
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diagonal terms for all of its nodes, the preconditioning process ( 1) 1 ( 1)i i

D

+ ! +

=d A r  can be per-

formed independently on each domain since the preconditioner is the diagonal part of the 

system matrix. 

4.4.4 Coarse-to-Fine Mesh Interpolation 

On each domain, the interpolation operator 
i
T  needs to be computed in order to interpo-

late the coarse mesh correction !
ic

x  using 

 ! !=
i if i cx T x , (4.20) 

to obtain the corrections on the fine domain. Considering Equation (4.1), we should deter-

mine the expression for the global interpolation operator T  to see if there is any need for 

data transfer between the domains to complete the interpolation process. Using Equations 

(4.4), (4.3) and (4.20) we can write 

    

!x
f

= M
f

i

W
f

i

!x
f

i

i=1

n
D

!  

          
    

= M
f

i

W
f

i

T
i
!x

c
i

i=1

n
D

!  

               
    

= M
f

i

W
f

i

T
i
M

c
i

T
!x

c

i=1

n
D

!  

!=
c

T x  

where 
if

M  and 
ic

M  are the mapping matrices for the fine and coarse meshes on domain 
i

D , 

respectively and 
if

W  is the fine mesh weighting matrices for this domain. Therefore, the 

global interpolation operator is 

 
    

T = M
f

i

W
f

i

T
i
M

c
i

T

i=1

n
D

! . (4.21) 
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Equation (4.21) indicates that there is no need for communications across the domains to 

form the interpolation operator T . This makes the interpolation process straightforward to 

implement using our data structure. Since we are restricting attention to nested meshes, inter-

polation can proceed independently on each domain in the manner described in Chapter 3. 

This is implemented in the element-by-element framework by looping over the coarse mesh 

elements on each domain; no transfer of data between the domains is required.  

4.4.5 Fine-to-Coarse Mesh Restriction 

The restriction operator is the transpose of the interpolation operator (Equation (4.2)). 

However, its implementation is more complex. Equation (4.21) can be used to determine the 

restriction operator T

T ; 

 
    

T
T

= M
c

i

T
i

T
W

f
i

T
M

f
i

T

i=1

n
D

!   

             
    

= M
c

i

T
i

T
W

f
i

M
f

i

T

i=1

n
D

!  (4.22) 

where =
i i

T

f fW W  because the weighting matrices are diagonal. Then, using Equations (4.2) 

and (4.3), 

    

r
c

= M
c

i

T
i

T
W

f
i

M
f

i

T
r

f

i=1

n
D

!  

  
    

= M
c

i

T
i

T
W

f
i

r
f

i

i=1

n
D

!  (4.23) 

Also, 

=
i i

T

c c c
r M r  

                                 

    

= M
c

i

T
M

c
j

T
j

T
W

f
j

r
f

j

j=1

n
D
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= T
i

T
W

f
i

r
f

i

+ M
c

i

T
M

c
j

T
j

T
W

f
j

r
f

j

j=1

j!i

n
D

"  (4.24) 

Here, 
i j

T

c cM M  represents data transfer from jD  to 
i

D . Thus, 
ic
r , the coarse mesh residual on 

domain 
i

D  can be computed by calculating 
i i

T

i f fT W r  on each domain, and then transferring 

border data between domains on the coarse mesh in the same manner as shown in Figure 4.2. 

The calculation of 
i i

T

i f fT W r  requires careful consideration. To demonstrate, consider the 

two dimensional nested meshes in Figure 4.4. The figure shows four of the fine mesh ele-

ments that compose a coarse mesh element and the weighted transfer of data from the fine 

mesh to the coarse mesh required by the computation of 
i i

T

i f fT W r . Each of the coarse mesh 

nodes receives the fine mesh values at that node, plus 1
4

 the values of the adjacent fine mesh 

center nodes (e.g., node f in Figure 4.4) and 1
2

 of the values of adjacent fine mesh edge 

nodes (e.g., node g in Figure 4.4). By considering all of the elements in 
i

D , the result of this 

transfer is, for example, 

 ( ) ( )1 1
2 4

= + +
a a i k e g h j l fc f f f f f f f f fr r r + r + r + r r + r + r + r  (4.25) 

This calculation can be implemented by looping over the coarse mesh elements in the domain 

and transferring the values at the fine mesh corner, side and center nodes in turn. In order to 

ensure that each fine mesh nodal quantity is transferred only once as all of the coarse mesh 

elements are processed, each fine mesh value is set to zero after it has first been transferred. 

4.4.6 DAXPY Operations 

The remaining operations required by the algorithm (i.e., DAXPY’s ) can be performed 

independently on each domain by virtue of the mash partitioning. Since each domain receives 

the components of a vector defined for the mesh that belong to the degrees-of-freedom pre-

sent in the domain, the DAXPY ! +x y  can be computed independently on each domain as 

! +i ix y ; this requires that !  be stored on each domain. 
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4.5 Data Structure and Implementation Issues 

The proposed algorithm is implemented in a portable code using most of the features of 

Fortran 90. One of our objectives is to develop a single code that can be used on a wide vari-

ety of parallel architectures. The efficiency of this work will be shown later by solving some 

benchmark problems on different parallel systems. Features of the Fortran 90 language that 

make this possible are described in the next section. 

4.5.1 Object-Based Programming 

The addition of modules, pointers and derived types to the Fortran standard significantly 

aided in the development and maintenance of the code written for this study. The necessary 

procedures can be written to operate on the various data objects, such as meshes and ele-

ments, without the overhead of memory management common to FORTRAN 77 implemen-

tations. User defined data types are employed to generate the necessary data structures on 

each processor and all storage is dynamically allocated using pointers. 

The mesh hierarchy is managed using a doubly linked list that facilitates the intermesh 

switching required by the multigrid algorithm (Figure 4.5). A derived type named 

mesh_pointers contains pointers to the global vectors and element information required on 

each mesh. There are two stationary pointers that locate the data for the finest and coarsest 

meshes, and a moving pointer provides access to the data required on the mesh currently un-

der consideration (e.g., when relaxation is being performed on one of the coarse meshes). 

Figure 4.6 outlines the primary information that the mesh_pointers data type can in-

clude. Different element types are easily included through the definition of derived types 

such as mesh_brick8, a pointer to eight node brick element data or mesh_nl_brick8, a 

pointer to nonlinear eight node brick element data. Other pointers to handle inter-processor 

communications are also included which are explained in the next section. The pointers fin-
est_mesh and coarsest_mesh are placed in a module that is accessible to all procedures. 

This global module also contains vectors used on the finest mesh and replaces the common 

blocks familiar to FORTRAN 77 programmers. 
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4.5.2 Interprocessor Communications 

So far, we have not explicitly identified the domains with individual processors of a par-

allel computer. In some instances, such as mesh generation using adaptive refinement, multi-

ple domains may be placed on a single processor in order to maintain load balance. However, 

these cases are not discussed here, and we make the assumption that each domain is assigned 

to a single processor (i.e., domain 
i

D  is assigned to processor 
i

P ). We also assume that the 

mesh is partitioned so that the number of elements in each domain is the same on a given 

mesh (this is discussed further in the next section). 

Interprocessor (or inter-domain) communication is performed using non-blocking com-

munication procedures from the standard MPI library [6]. Two types of interprocessor com-

munication need to be considered: local data transfer during the matrix-vector products 

(Equations (4.8) and (4.24)) and global data transfer during the scalar products (Equation 

(4.13)). The mesh_pointers data type that was described in the previous section also in-

cludes the necessary pointers to handle these communications. The pointers 

mesh_mapping_send and mesh_mapping_recv are used for local data transfers and 

dot_product_comm is used for global data transfers. 

First, consider the local transfer via the communication matrix T

i jM M . Processor 
i

P  

contains a list of the 
icp

n  processors that it communicates with, i.e., jP , j = 1,…,
icp

n  (these 

are the processors that contain degrees-of-freedom that also belong to 
i

P ). The type of the 

pointers mesh_mapping_send and mesh_mapping_recv is defined as in-
ter_processor_mapping: a derived data type that provides all the required information 

(Figure 4.7). For example, on processor 
i

P , mesh_mapping_send( jP ) includes the list of 

nodes on 
i

P  that also belong to jP  (border_nodes) and the degrees-of-freedom associated 

with these border nodes on 
i

P  (send_equ_num). Similarly, mesh_mapping_recv( jP ) 

contains the information about jP  the receiving processor, e.g., a list of the degrees-of-

freedom on jP  that 
i

P  sends information to (indx). Using this data structure, exchange of 

data between processors can be performed on each mesh in the multigrid solution algorithm. 

This interchange is depicted in Figure 4.8. 
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We are dealing with unstructured meshes and this means the neighboring nodes have 

non-contiguous equation numbers. To avoid short messages and therefore latency dominated 

transfer times, all of the sending values are first packed into the sending buffer on each proc-

essor. This data is received in a receiving buffer and then unpacked to update the appropriate 

vector. Using non-blocking communication procedures (MPI_Isend and MPI_Irecv) avoids 

deadlocks and makes concurrent transfer of data possible. Deadlock might happen in block-

ing communications when all of the sends block, waiting for a matching receive. Deferring 

synchronization is another reason for using non-blocking operations. A send-receive opera-

tion accomplishes two tasks: data transfer and synchronization. In many cases, blocking pro-

cedures would introduce more synchronization than required. Use of non-blocking operations 

and MPI_Waitall defer synchronization. 

The global data transfer for scalar products is achieved using the MPI_AllReduce pro-

cedure. To compute ( )! = x, y , processor 
i

P  computes 
i

! =
T T

i i ix W y . The global value of 

!  is computed and becomes available to all of the processors using MPI_AllReduce as de-

picted in Figure 4.9. The weighting matrix 
i

W  is stored as vector on 
i

P  and in the 

mesh_pointers data type (Figure 4.6) is represented as dot_product_comm. 

4.6 Mesh Generation and Partitioning 

The multigrid solution algorithm requires a hierarchy of increasingly finer meshes. 

Adaptive mesh refinement schemes can be used to create the necessary meshes; the distrib-

uted implementation of these schemes requires a separate research effort. Here, we employ 

the Truegrid mesh generation software [35] to produce a sequence of nested, uniformly re-

fined hexahedral meshes. Truegrid is based on a technique known as the projection method. 

This method allows faces, edges, and nodes of the mesh to be placed on surfaces. In addition, 

edges and nodes of the mesh can be placed along curves by this method. Creating geometry 

and creating a mesh are two separate phases in Truegrid. First, surfaces and curves are cre-

ated (or imported) and then a block mesh is produced and molded to the shape of the geome-

try. Complex parts can be modeled in this manner. Figure 4.10 shows a sequence of nested, 

uniformly refined meshes for a solid rocket motor that were generated using this method. 
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In this study, in order to get a high quality decomposition of the finite element domain, 

we employ the METIS graph-partitioner software [27]. The resulting decomposition balances 

the computational load among the processors while simultaneously minimizing the commu-

nication cost between the processors. A graph representation of the element connectivity is 

generated by METIS, which is coupled with a multi-level partitioning scheme to attain uni-

form computational loads and to minimize domain boundaries. When the domain consists of 

different element types with different computational costs, non-uniform weights can be as-

signed to the domain to provide METIS with enough information (i.e., relative computational 

cost of elements) to produce a load-balanced decomposition. 

Partitioning is performed on the coarsest mesh using METIS. Figure 4.11 illustrates the 

coarsest mesh partitions for eight processors of a solid rocket motor. Uniform refinement of 

these partitions produces partitions on all fine meshes. Using this method, perfect element 

load balance is maintained throughout the mesh hierarchy but communications may not be 

optimum for the fine meshes. In the next chapter, by showing the results from some bench-

mark runs, it will become clear these non-optimal communications does not introduce any 

significant overhead. Truegrid capabilities make the refinement process a trivial task and 

provide enough information about the coarse meshes to prepare all the necessary input data 

required in the multigrid solution method. 
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Figure 4.1: A Sixteen Element Mesh Partitioned into Four Do-
mains. 
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Figure 4.2: The Communication matrix T

i jM M  Transfers 
Variables from jD  to 
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Figure 4.3: Gather-Scatter Operation for Matrix-Vector Prod-
ucts on each Domain. 
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Figure 4.4: Calculation of 
i i

T

i f fT W r  for a Two Dimensional 
Nested mesh.  
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Figure 4.5: Double Linked List for the Hierarchy of Meshes. 
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Figure 4.6: Derived Type Used for Mesh Data. 

 TYPE  mesh_pointers 
 
     INTEGER  : :  num_equ 
     INTEGER  : :  mesh_num 
 
     REAL(KIND=double),  DIMENSION( : ),  POINTER  : :  f 
     REAL(KIND=double),  DIMENSION( : ),  POINTER  : :  k_diag_inv 
     REAL(KIND=double),  DIMENSION( : ),  POINTER  : :  x 
 
     TYPE(mesh_quad4),       POINTER  : :  quad4 
     TYPE(mesh_brick8),       POINTER  : :  brick8 
     TYPE(mesh_nl_brick8),  POINTER  : :  nl_brick6 
 
     TYPE(mesh_pointers),   POINTER  : :  coarse_mesh 
     TYPE(mesh_pointers),   POINTER  : :  fine_mesh 
 
     TYPE(inter_processor_mapping), DIMENSION( : ), POINTER  : : mesh_mapping_send 
     TYPE(inter_processor_mapping), DIMENSION( : ), POINTER  : : mesh_mapping_recv 
 
     INTEGER, DIMENSION( : ),  POINTER  : : dot_product_comm 
 
  END TYPE  mesh_pointers 
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Figure 4.7: Derived Type That Provides All the Required In-
formation for Communications Between Domains on Each 

Mesh. 

 TYPE  inter_processor_mapping 
 
     INTEGER,  DIMENSION ( : ),  POINTER : :  border_nodes 
     INTEGER,  DIMENSION ( : ),  POINTER : :  indx 
 
     INTEGER,  DIMENSION ( : ),  POINTER : :  send_equ_num 
 
     INTEGER : :  send_count 
 
     INTEGER : :  num_border_np 
 
 END TYPE inter_processor_mapping 
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Figure 4.8: Local Inter-Domain Data Transfer Via the Com-
munication Matrix T

i jM M . 
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Figure 4.9: Global Data Transfer to Compute Scalar Products. 
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Figure 4.10: A Sequence of Nested, Uniformly Refined Meshes 
for a Solid Rocket Motor. The Finest Mesh has 262,144 Ele-

ments. 
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Figure 4.11: Coarsest Mesh Partitions for Eight Processors of a 
Solid Rocket Motor. 
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C H A P T E R  5  

PARALLEL PERFORMANCE 

Parallelization of the multigrid solution algorithm based on the domain decomposition 

methodology was described in the previous chapter. Different components of this method 

were examined to detect any necessary data transfer between the domains and the implemen-

tation issues for an efficient communication algorithm were discussed. The matrix free ap-

proach embedded in the element-by-element framework was adopted to reduce the required 

memory and CPU time. Here, the performance of the parallel algorithm described in this 

document is studied using two sets of benchmark problems: fixed-size problems and scaled-

size problems. In the following sections, these benchmark problems and the measures used to 

evaluate performance are explained. In order to demonstrate the portability of the code, 

analyses were conducted in dedicated mode on three different parallel machines: an SGI Ori-

gin2000, an IBM SP2 and a CRAY T3E. The performance of the algorithm on these three 

machines is compared. A cost analysis is then performed for the scaled-size problems by tim-

ing all the necessary communications separately and comparing with the total computation 

time. 

5.1 Description of the Computer Architectures Employed 

This section outlines the three parallel machines used to benchmark the algorithm de-

scribed in this document: an SGI Origin2000 at the National Computational Science Alliance 

(NCSA) at the University of Illinois, an IBM SP2 at the Argonne National Laboratory and a 

CRAY T3E at Pittsburgh Supercomputing Center. 
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The SGI Origin2000 has a distributed shared-memory architecture with a number of 

processing nodes linked together by an interconnection fabric. Each processing node contains 

either one or two processors, a portion of shared memory, a directory for cache coherence, 

and two interfaces: one that connects to I/O devices and another that links system nodes 

through the interconnection fabric. The Origin2000 uses Silicon Graphics’ Scalable Shared-

Memory Multiprocessor (S2MP) architecture to distribute shared memory amongst the 

nodes. This shared memory is accessible to all processors through the interconnection fabric, 

which links nodes to each other and is a mesh of multiple, simultaneous, dynamically-

allocated switch-connected links. The processors are MIPS R10000, a 64-bit superscalar 

processor which supports dynamic scheduling. A maximum of 128, 250 Mhz processors and 

64 GB of memory were available for this research. In addition to shared memory program-

ming model, message passing and data-parallel programming models are supported on this 

machine. 

The IBM SP2 is a scalable parallel system based on distributed memory message passing 

architecture. The processor nodes consists of a POWER2 Super Chip (P2SC) microprocessor 

or PowerPC symmetric multiprocessor (SMP), memory, Micro Channel expansion slots for 

I/O and connectivity and disk devices. Three types of nodes (thin, wide and high) are avail-

able and can be mixed in a system. Internode communication is performed by the SP switch, 

which is a high-performance, multi-stage, packet-switched network that maintains the point-

to-point communication time independently from the relative position of the nodes. We used 

an SP2 with 80 P2SC 120 Mhz thin nodes and 256 MB RAM per node. 

The CRAY T3E is a scalable parallel system and for this research, we had access to a 

T3E with 512 processing elements (PE’s), which were high-performance Digital Alpha 64-

bit microprocessors, each running at 450 Mhz. CRAY T3E processing elements are tightly 

coupled by the Cray interconnect: a three-dimensional bi-directional torus capable of very 

low latency and high bandwidth. The memory is physically distributed, with each PE having 

128 MB. CRAY T3E has another feature called STREAMS, which maximizes local memory 

bandwidth, allowing the microprocessor to run at full speed for vector-like data references. 

CRAY T3E systems support both explicit distributed memory parallelism through CF90 and 

C/C++ with message passing (MPI or PVM) and data-parallel programming models and im-

plicit parallelism through HPF and the Cray CRAFT work-sharing features. 
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5.2 Fixed-Size Problems 

we evaluate the scalability of our parallel algorithm by solving some fixed-size problems 

and observe how effectively our proposed scheme can use an increased number of proces-

sors. In these experiments, our approach to quantify parallel performance is to determine how 

elapsed wall clock time and efficiency vary with increasing processor count for a fixed prob-

lem size. We also measure the speedups for each of these runs. Speedup, pS , and efficiency, 

pE , are defined by the following equations: 

 1

p
p

t
S

t
=  (5.1) 

and 

 p

p

S
E

P
=  (5.2) 

where 
1
t  is the elapsed wall clock time on one processor and 

p
t  is the time on P  processors. 

Efficiency is a measure independent of problem size that can indicate how effective the algo-

rithm uses the computational resources. 

Amdahl’s law [28] is also used in this section for our performance evaluation. This law 

states that the time required to run a process on P  processors, 
p
t , is 

 1 1(1 )p

f
t f t t

P
= ! + , (5.3) 

where f  is the fraction of the process running in parallel. From this equation, the speedup 

can be derived as 

 1 1

(1 )
p

p

t
S

t f
f

P

= =

! +

, (5.4) 

which means the maximum possible speedup that can be achieved on a parallel computer 

(with infinite processors) is limited by 1
(1 )f!

. 

Amdahl’s law should not be viewed as the only explanation for scalability limitations of 

a parallel algorithm because these limits may be due to communication costs, replicated 
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computation or idle time rather than the existence of sequential components. On the other 

hand, if we want to claim that our algorithm does not include any sequential parts, we should 

be able to find a set of problems for which the computed fraction of parallelism from the 

Amdahl’s law equation is equal to one. Although Amdahl’s law is based on a simple model 

of parallel computing, it still can reveal important features of the performance of a given im-

plementation. 

 Since we only had access to multi-processor machines (i.e., we were unable to run our 

test problems on a single processor of either the three target machines due to restrictions on 

time or memory), we used a least squares fit to estimate the values of 
1
t  and f , and calcu-

lated pS  and pE  from Equations (5.1) and (5.2). The overall parallel performance is given 

for a single complete full multigrid solve that includes 10 fine mesh relaxations (five at the 

beginning and another five after the interpolation), interpolation, restriction and coarse mesh 

solution. In the next section, we describe the specifications of these fixed-size problems. 

5.2.1 Problem Specifications 

A simple three dimensional problem was used to test the performance of the parallel al-

gorithm for fixed-size problems. A coarse mesh with 64 eight node trilinear brick elements 

was generated to discretize a cube. This mesh was then uniformly refined three and four 

times to produce two sets of problems with 32,768 elements and 262,144 elements at the fin-

est level (Figure 5.1 shows the first three meshes of increasing refinement for this cube). 

These two sets of problems (each partitioned for different number of processors) have 35,645 

nodes (or 110,435 degrees-of-freedom) and 275,846 nodes (or 765,983 degrees-of-freedom) 

respectively. One side of this cube was held fixed and some uniform tractions were applied at 

the other sides as shown in Figure 5.2. A Bilinear (Mises) material model with steel proper-

ties was assumed. 

Decompositions of this model were done using the method described in Chapter 4. The 

coarsest mesh was decomposed into 8, 16, 32 and 64 partitions and each partition was then 

uniformly refined to produce the partitions for finer levels. Figure 5.3 shows the decomposi-

tion of the problem with 32,768 elements into eight partitions at the third level. On the SGI 

Origin 2000, a bigger problem with 2,097,152 elements (2,145,785 nodes and 6,749,745 de-

grees-of-freedom) was also generated to be solved on up to 128 processors by producing a 
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coarse mesh with 128 elements and refining it four times. This problem could not be solved 

on the CRAY T3E and IBM SP2 that we had access to because of the memory limits of these 

machines. The total amount of memory required by our code to solve these three sets of 

problems (with 32,768 elements, 262,144 elements and 2,097,152 elements) was 184 MB, 

1.45 GB and 11.6 GB respectively. The memory needed to allocate the communication ar-

rays in the algorithm is minimal in our implementation. 

5.2.2 Results and Discussion 

Figures 5.4, 5.5 and 5.6 show the wall clock times required by the test problems when 

run in dedicated mode on various numbers of processors of the SGI Origin2000. Note that 

these timings include all of the costs associated with the algorithm: computation, communi-

cation and idle time (if any). As mentioned before, these problems maintain perfect load bal-

ance across the processors and, ideally, there should be no idle time for any of the processors. 

However, as we see later in this chapter (for the scaled-size problems), in case of the SGI 

Origin2000, some idle time can be measured for some of the processors due to certain 

anomalies. On each of these figures we also report the values for 
1
t , the time required on one 

processor and f , the fraction of the process running in parallel, which were both computed 

using a least squares fit to Amdahl’s law, equation (5.3). The curves shown in these figures 

are the result of this least squares fit. Excellent results are observed for the test problems, es-

pecially those with the larger number of degrees-of-freedom. The problem with 32,768 ele-

ments was solved efficiently up to 32 processors. Similar results for the wall clock times are 

shown for the IBM SP2 (Figures 5.7 and 5.8) and the CRAY T3E (Figures 5.9 and 5.10). 

Speedups are shown in Figure 5.11 for the SGI Origin2000, Figure 5.12 for the IBM SP2 and 

Figure 5.13 for the CRAY T3E. Parallel efficiencies are also shown in Figures 5.14, 5.15 and 

5.16 for these three parallel machines. 

Superlinear speedups and efficiencies exceeding 1.0 are observed in some cases due to 

cache effects, i.e., when a greater number of processors are used to solve a fixed-size prob-

lem, more of its data can be placed in the cache memory. As a result, total computation time 

will tend to decrease. If this decrease in computation time offsets increases in communication 

and idle times resulting from the use of additional processors, then speedup will be superlin-

ear and efficiency and the fraction of parallelism will be greater than one. Among the three 
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machines employed in this study, the SGI Origin2000 has the largest cache memory size (32 

KB primary and 4 MB secondary) and therefore shows the strongest cache effects. 

Parallel performance of the three parallel machines is compared in Figure 5.17 where the 

elapsed wall clock time required by each of these machines to solve the problem with 

262,144 elements are shown together. The CRAY T3E appears to be the fastest among the 

three, although on 64 processors, using its strong cache performance, the SGI Origin2000 is 

able to solve the problem in almost the same amount of time as the CRAY T3E.  

In addition, the floating point performance of these machines is compared in Figure 

5.18. Again, the CRAY T3E shows a better result, e.g., on 64 processors, 3587 MFLOPS (or 

56 MFLOPS per processor) was obtained during the solution. Figure 5.19 shows the floating 

point performance of the SGI Origin2000 for all three problems where the largest problem 

was solved on 128 processors. In this case, 4108 MFLOPS (or 32 MFLOPS per processor) 

was achieved. We should note that the source code used on the three machines was identical; 

no fine tuning was done in each case to improve performance. 

5.3 Scaled-Size Problems 

Solving fixed-size problems on different numbers of processors does not usually demon-

strate the scalability of an algorithm due to certain anomalies caused by the changes in the 

conditions in which processors function. When the number of processors for a given problem 

is increased, the amount of work and the memory requirements per processor can change 

dramatically. As noted in the previous section, cache effects are the most common anomaly 

witnessed in these circumstances that can interfere with scalability studies and sometimes 

make it impossible to obtain real performance results for the implemented algorithm. Also, 

for a large fixed-size problem, virtual memory paging might become necessary when smaller 

number of processors are used that can cause a considerable degradation in performance. The 

problem would then be solved faster on a larger number of processors in the absence of vir-

tual memory paging, resulting in superlinear speedups. These observations encourage a dif-

ferent approach to parallel performance analysis called scaled problem analysis, whereby we 

use scaled-size problems, i.e., we increase the model size with the number of processors to 

maintain the same work load per processor. 
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Often, large parallel computers are used to solve larger problems rather than solving 

fixed-size problems faster. This is another motivation for doing a scaled problem analysis. 

The fixed-size problem analysis allows us to find out what is the fastest one can solve a cer-

tain problem on a certain machine using a proposed algorithm, whereas the scaled-size prob-

lem analysis reveals not only the parallel scalability but also the numerical scalability of the 

algorithm which demonstrates its ability to solve larger problems. 

The scaled speedup is defined by the following equation, 

 1

p
p

Pt
S

t
= , (5.5) 

where 
1
t  is the elapsed wall clock time on one processor and 

p
t  is the time on P  processors 

when solving a scaled-size problem. In this section, we report parallel performance for a sin-

gle complete full multigrid solve that includes 10 fine mesh relaxations per iteration (five at 

the beginning and another five after interpolation), interpolation, restriction and coarse mesh 

solution. Next section describes the specifications of our scaled-size test problems. 

5.3.1 Problem Specifications 

A section of the grain (propellant) of a solid rocket motor subjected to internal pressure 

was modeled to generate scaled-size test problems. This model has four meshes of increasing 

refinement with 8192 elements and 9792 nodes at the finest level on a single processor 

(Figure 5.20). The nodes along the curved outside surface were fixed to represent the high 

stiffness of a casing. A simple linear-elastic material model was assumed for the fuel with E 

= 3.4 MPa, 0.49! = . To generate scaled-size problems for 8, 16, 32, 64, 128, 256 and 512 

processors, the length of the propellant was increased by putting together the same number of 

layers of the above mesh. Table 5.1 contains the number of elements and nodes of the result-

ing meshes for up to 512 processors and Figure 5.21 shows the decomposition of the model 

generated for 8 processors. There was 40 MB of memory per processor required to solve the 

scaled-size test problems. 

5.3.2 Results and Discussion 

Tables 5.2, 5.3 and 5.4 summarize the scalability and parallel performance results for a 

full multigrid solve on the CRAY T3E, the IBM SP2 and the SGI Origin2000 respectively. 
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These results include total elapsed wall clock time, scaled speedups and efficiency for differ-

ent numbers of processors. On the CRAY T3E and the IBM SP2, wall clock times remain 

almost constant when the number of processors is increased up to the maximum number 

available on these machines, which shows our parallel algorithm is highly scalable. This also 

explains the excellent speedup and efficiency results. On the SGI Origin2000, parallel per-

formance shows a noticeable drop-off in speedup and efficiency measures above 64 proces-

sors. The above results for the wall clock time, scaled speedups and efficiency from the dif-

ferent machines are combined in Figures 5.22, 5.23 and 5.24 for comparison purposes. The 

CRAY T3E has the shortest runtime and shows the best performance. The floating point per-

formance of these machines are also compared in Figure 5.25 which shows 62, 30 and 43 

MFLOPS per processor were achieved on the CRAY T3E, IBM SP2 and SGI Origin2000 

respectively. 

In order to investigate the costs of the different communications involved in our algo-

rithm, timing was also done for important sections of our implementation. This included tim-

ings for the total computation and communications in the matrix-vector multiplications, sca-

lar products and restriction operations. The ratio of communication times required for differ-

ent operations to the total computation times versus number of processors are illustrated in 

Figures 5.26, 5.27 and 5.28 for the three parallel machines. This cost analysis shows that the 

total ratio of communication cost to computation cost remained under 3% for all cases. Also, 

the communication cost associated with the matrix-vector products shows excellent scalabil-

ity on the CRAY T3E and IBM SP2. Due to the global data transfers, the cost of communica-

tions related to the scalar products increases when a large number of processors are used. The 

restriction operations require minimal communication cost. 

5.3.3 Lazy Origin2000 Processors 

As mentioned earlier, the SGI Origin2000 showed a noticeable drop-off in parallel per-

formance measures for larger number of processors. A more careful look into the timings for 

the cost analysis described above revealed an interesting phenomenon for this parallel ma-

chine. Timings were conducted in dedicated mode and barriers were used at the necessary 

locations to ensure that the computations, communications and idle times were accurately 

measured. The computation time on all of the processors must be equal for a scaled-size test 
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problem where the processors have exactly the same amount of computational work. The 

timings on the CRAY T3E and the IBM SP2 followed this simple rule but the story was dif-

ferent for the SGI Origin2000. Figure 5.29 shows the total computation time for the matrix-

vector multiplications on each processor for a scaled-size test problem executed on 128 proc-

essors. A few of the processors spend more time than the others to perform the same amount 

of computational work. This results in an increase in the total runtime because the rest of the 

processors have to wait for these lazy processors at any synchronization point. All of the 

processors available in the machine were used for this test. To try the case where more re-

sources are available for the system, the same test was also performed on 124 processors of 

this machine and the same result was observed (Figure 5.30). Running this test several times 

showed that different processors would become lazy for different runs. 

The SGI Origin2000 and other machines with a similar architecture are become more 

available to users. Experts predict this trend will continue into the future. This justified more 

investigation into this matter. The SGI Origin2000 features the Cache Coherent NonUniform 

Memory Access (CC-NUMA) memory subsystem, which provides the user with a simple 

shared memory programming model. However, the actual memory is physically distributed 

that could have a significant impact on the performance of applications on the Origin2000 

system. A description of the CC-NUMA memory subsystem is given in [32]. We used the 

NUMA library [31] to investigate the perceived performance problems associated with proc-

ess and memory placement on an SGI Origin2000. This library contains some Fortran call-

able routines, which provide a fairly flexible set of features for the analysis and management 

of memory and process placement on the Origin2000 system. 

We wanted to ensure that there was no mismatch between the memory and the process 

location; that is, all the processes (running on their CPUs) should allocate all of the memory 

they need on the same nodes that contain their CPUs (the Origin2000 that we had access to 

had two CPUs on each node). In other words, any memory allocated for a process comes 

from the same node containing the CPU that runs the process. This was accomplished by 

calling the place_process( ) routine in the NUMA library. This routine has two separate 

actions. First, the process is linked with the specified node such that any memory allocated 

for the process comes from that node. Second, the process is associated with one of the CPUs 



75 75 

on the node so that as the process runs (on that CPU) it will be accessing memory that is lo-

cal to that node. 

Figure 5.31 shows similar timing data as Figure 5.29 after the process placement. There 

are some improvements in the maximum timings of the lazy processors (from 78 seconds to 

less than 74 seconds) but the average time is still at the same level as before. The total run-

time after process placement was 79.3 seconds that is not a significant improvement (from 

80.80 seconds without process placement). There is another possible explanation for this 

phenomena in which system processes apparently steal processor cycles from computing 

processes, which gives the appearance of slowing down one or two of them. 
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Table 5.1: Number of Elements and Nodes for the Generated 
Scaled-Size Test Problems. 

 

Number of Proces-
sors 

Number of Ele-
ments 

Number of 
Nodes 

1 8,192 9,792 

8 65,536 70,720 

16 131,072 140,352 

32 262,144 279,616 

64 524,288 558,144 

128 1,048,576 1,115,200 

256 2,097,152 2,229,312 

512 4,194,304 4,457,536 
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Table 5.2: Scalability and Parallel Performance Results for a 
Full Multigrid Solve on the CRAY T3E. 

Number of 
Processors 

Elapsed 
Time (sec) 

Scaled 
Speedup 

Efficiency 

1 52.46 1.00 1.00 

8 52.93 7.93 0.99 

16 52.96 15.85 0.99 

32 53.31 31.49 0.98 

64 53.45 62.81 0.98 

128 53.62 125.23 0.98 

256 53.68 250.14 0.98 

512 54.21 495.47 0.97 
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Table 5.3: Scalability and Parallel Performance Results for a 
Full Multigrid Solve on the IBM SP2. 

Number of 
Processors 

Elapsed 
Time (sec) 

Scaled 
Speedup 

Efficiency 

1 109.31 1.00 1.00 

8 112.24 7.79 0.97 

16 112.93 15.49 0.97 

32 113.40 30.85 0.96 

64 117.52 59.53 0.93 
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Table 5.4: Scalability and Parallel Performance Results for a 
Full Multigrid Solve on the SGI Origin2000. 

Number of 
Processors 

Elapsed 
Time (sec) 

Scaled 
Speedup 

Efficiency 

1 62.94 1.00 1.00 

8 63.91 7.88 0.99 

16 63.99 15.74 0.98 

32 65.24 30.87 0.96 

64 66.62 60.46 0.94 

128 80.80 99.71 0.78 
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Figure 5.1 : The First Three Meshes of Increasing Refinement 
for the Cube. 
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Figure 5.2: The Boundary Conditions for the Cube Benchmark 
Problem. 
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Figure 5.3: Decomposition of the Fixed-Sized Problem with 
32,768 Elements into 8 Partitions at the Third Level. 
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Figure 5.4: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 32,768 Elements 

on the SGI Origin2000. Time is Given for a Single Full Multi-
grid Solve. Time on One processor and the Fraction of Parallel-

ism are also Reported. 
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Figure 5.5: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 262,144 Elements 
on the SGI Origin2000. Time is Given for a Single Full Multi-
grid Solve. Time on One processor and the Fraction of Parallel-

ism are also Reported. 
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Figure 5.6: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 2,097,152 Ele-

ments on the SGI Origin2000. Time is Given for a Single Full 
Multigrid Solve. Time on One processor and the Fraction of 

Parallelism are also Reported. 
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Figure 5.7: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 32,768 Elements 
on the IBM SP2. Time is Given for a Single Full Multigrid 

Solve. Time on One processor and the Fraction of Parallelism 
are also Reported. 
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Figure 5.8: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 262,144 Elements 

on the IBM SP2. Time is Given for a Single Full Multigrid 
Solve. Time on One processor and the Fraction of Parallelism 

are also Reported. 
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Figure 5.9: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 32,768 Elements 
on the CRAY T3E. Time is Given for a Single Full Multigrid 
Solve. Time on One processor and the Fraction of Parallelism 

are also Reported. 
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Figure 5.10: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Fixed-Size Problem with 262,144 Elements 
on the CRAY T3E. Time is Given for a Single Full Multigrid 
Solve. Time on One processor and the Fraction of Parallelism 

are also Reported. 
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Figure 5.11: Speedups for the Different Fixed-Size Problems 
on the SGI Origin2000. 
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Figure 5.12: Speedups for the Different Fixed-Size Problems 
on the IBM SP2. 
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Figure 5.13: Speedups for the Different Fixed-Size Problems 
on the CRAY T3E. 
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Figure 5.14: Efficiency for the Different Fixed-Size Problems 
on the SGI Origin2000. 
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Figure 5.15: Efficiency for the Different Fixed-Size Problems 
on the IBM SP2. 



95 95 

Number of Processors

E
ff
ic

ie
n
c
y

262,144 Elements

32,768 Elements

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

 

Figure 5.16: Efficiency for the Different Fixed-Size Problems 
on the CRAY T3E. 
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Figure 5.17: Comparison of the Total Elapsed Wall Clock 
Time on the 3 Different Parallel Machines Versus Number of 

Processors for the Fixed-Size Problem with 262,144 Elements. 
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Figure 5.18: Comparison of the Floating Point Performance on 
the 3 Different Parallel Machines Versus Number of Processors 

for the Fixed-Size Problem with 262,144 Elements. 
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Figure 5.19: Floating Point Performance of the SGI Origin2000 
Versus Number of Processors for Different Fixed-Size Prob-

lems. 
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Figure 5.20: Four Meshes of Increasing Refinement Used for 
the Scaled-Size Benchmark Problems. 
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Figure 5.21: Decomposition of the Scaled-Size Problem Gen-
erated for 8 Processors. 
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Figure 5.22: Total Elapsed Wall Clock Time Versus Number of 
Processors for the Scaled-Size Test Problems on Three Differ-
ent Parallel Machines. Time is Given for a Single Full Multi-

grid Solve. 
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Figure 5.23: Comparison of Scaled Speedups for Three Differ-
ent Parallel Machines. 
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Figure 5.24: Comparison of Efficiency for Three Different Par-
allel Machines to Solve the Scaled-Size Test Problems. 
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Figure 5.25: Comparison of the Floating Point Performance for 
Three Different Parallel Machines to Solve the Scaled-Size 

Test Problems. 
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Figure 5.26: Cost Analysis for the CRAY T3E. 
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Figure 5.27: Cost Analysis for the IBM SP2. 
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Figure 5.28: Cost Analysis for the SGI Origin2000. 
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Figure 5.29: The Lazy Processors Phenomena for the SGI Ori-
gin2000 in a Scaled-Size Test Problem (8192 Elements per 

Processor) on 128 Processors. 
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Figure 5.30: The Lazy Processors Phenomena for the SGI Ori-
gin2000 in a Scaled-Size Test Problem (32768 Elements per 

Processor) on 124 Processors. 
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Figure 5.31: The Effect of Process Placement to Diminish the 
Lazy Processors for a Scaled-Size Test Problem (8192 Ele-

ments per Processor) on 128 Processors. 
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C H A P T E R  6  

ORGANIZATION 

The following describes ROCSOLID’s modules and important subroutines. Inside each 

of these modules Elemtype indicates one of the element types implemented in ROCSOLID, 

i.e., b8_ale or b8_bbar or b8_me b8_ld (ROCSOLID 3.2). 

ROCSOLID 3.2 can be used either with other ROC* modules through GENX frame-

work or in the stand-alone mode. 

Module communication: contains subroutines to generate the arrays needed for inter-

processor communication and to perform the global scatter operation and the necessary 

communication between the processors. 

Contains: communicate, comm_allocate_read_data, comm_arrays_calc 

Module data_structure: contains subroutines to manipulate the data structure. 

Contains: storage_allocate 

Modute data_types: contains the data types used in the code. 

Contains: data types 

Module global_data: contains the global data used in the code. 

Contains: global data 

Module input: contains the subroutines for reading and writing the input data 

Contains: input_data, read_mat, io_unit_open 
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Module mat_vec_ops: contains a library of generic subroutines operating on matrices 

and vectors. 

Contains: A_times_p_ebe, m_times_p_ebe, c_times_p_ebe and scalar_product. 

Module mesh_data: contains the subroutines for generating the data on each mesh. 

Contains: mesh_data_generate, force_initialize, InterfaceSolidsMapBuild, force_calc, 

LumpedMassCalc, mesh_array_calc and equ_num. 

Module mpi_include: contains the MPI include line. 

Module output: contains the subroutines for writing out the results on a given mesh. 

Contains: output_results, mesh_patran_out, write_input_out, mesh_calc_out, 

mesh_motion_output_results, nodal_disp_out and patran_neutral. 

Module resource_calc: contains subroutines for timing and memory usage calculation. 

Contains: timer and mem_calc. 

Module rocsolid: contains the main driver. 

Module elemtype_A_diag_calc: contains the subroutine to calculate and assemble the 

inverse of diagonal part of system matrix. 

Contains: elemtype_A_diag. 

Module elemtype_Ap_calc: to perform [A]{p} calculations. 

Contains: elemtype_Ap, elemtype_mp_calc and elemtype_cp_calc. 

Module elemtype_calc: to calculate the element arrays. 

Contains: elemtype_conn_calc, elemtype_assem_calc, elemtype_load_calc and elem-

type_id_calc. 

Module elemtype_element: to perform calculations for elemtype. 

Contains: elemtype_k_diag_calc, elemtype_m_diag_calc, elemtype_c_diag_calc, elem-

type_kp, elemtype_mp and elemtype_cp. 

Module elemtype_gather_scatter: to perform gather-scatter operations. 

Contains: elemtype_gather and elemtype_scatter. 

Module elemtype_in: to read in data and allocate storage for elemtype. 



113 113 

Contains: elemtype_allocate_read_data. 

Module elemtype_out: to write out data for elemtype. 

Contains: elemtype_stress_strain_out, elemtype_write_neutral, elemtype_disp_build, elem-

type_write_input_out, elemtype_calc_arrays_out and elemtype_id_rebuild. 

Module elemtype_solve: contains subroutines to solve problems with elemtype. 

Contains: elemtype_t_x_calc and elemtype_t_trans_r_calc. 

Module elemtype_util: contains utility subroutines for elemtype. 

Contains: elemtype_derivatives_calc. 

Module elastic_mat: to calculate material dependent variables for elastic materials. 

Contains: elastic_stress_calc. 

Module j2_plasticity_mat: to calculate material dependent variables for J2 plasticity ma-

terials. 

Contains: j2_plasticity_stress_calc. 

Module ale_mod: to use the ALE formulation for solving problems with moving inter-

face. 

Contains: ale_steps, mesh_motion_solve_laplace, interface_position_read, sol-

ids_interface_coor_scatter, interface_tractions_read, SolidsTractionScatter. 

Module arc_length_mod: to perform arc length continuation method to trace the equilib-

rium path. 

Contains: arc_length_steps, predictor_solve, corrector_solve, stability_check and conver-

gence_check. 

Module newmark_mod: to integrate the equation of motion of the structure using the 

Newmark method. 

Contains: newmark and newmark_steps. 

Module newton_mod: to perform Newton iterations to trace the equilibrium path. 

Contains: newton_steps and convergence_check. 

Module nl_utilities: contains subroutines used in the nonlinear procedures. 



114 114 

Contains: initialize, residual_calc, converged_state_store, restore_converged_state, 

stress_recovery and elem_internal_force. 

Module bicgstab_solver: to solve nonsymmetric linear systems using biconjugate gradi-

ent stabilized method. 

Contains: bicgstab_solve. 

Module mg_solver: contains the subroutines for full multigrid solution algorithm. 

Contains: fmg_solve, mg_cycle, t_x_calc and t_trans_r_calc. 

Module pcg_solver: contains the subroutines for preconditioned conjugate gradient solu-

tion method. 

Contains: pcg_solve and pcg_relax. 

Module preconditioners: contains the subroutines for preconditioning during conjugate 

gradient iterations. 

Contains: precondition, preconditioner_calc and LumpedMassPreconditioner. 

Module solver_mod: to call different solvers for solving a system of linear equations. 

Contains: solve. 
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C H A P T E R  7  

ROCSOLID INTERFACE WITH ROCSTAR 

In addition to the usual ROCSOLID input files, interface mesh data is also needed to 

specify the mapping information between the interface and the ROCSOLID database. This 

information is then used to generate the data required by ROCFACE. ROCFACE uses this 

data to perform interpolation and data transfer between ROCSOLID and the other physics 

module, e.g., ROCFLO. 

The following information is registered with ROCCOM: 

• Interface nodal coordinates 

• Interface elements connectivities 

• Interface communication map 

• Interface nodal displacements (during solution) 

• Interface nodal velocities (during solution) 

• Interface number of nodes and elements 

In GENX, interface pressure values are received from ROCCOM during the solution. 

These tractions are then scattered to the ROCSOLID database using the mapping arrays. In-

terface nodal velocities are used by ROCFLO or ROCFLU only for the first predictor-

corrector cycle when no converged displacements are available from ROCSOLID. ROCFLO 

or ROCFLU use the solids interface displacements for the rest of the predictor-corrector cy-

cles. 
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The capabilities of GENX is used for output and restart features. The HDF output files 

can then be used by ROCKETEER for visualization. The required information for output and 

restart are also registered with ROCCOM.  
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