
 Rocmop User's Guide 5/14/07

Rocmop User’s Guide

Center for Simulation of Advanced Rockets
University of Illinois at Urbana-Champaign

2270 Digital Computer Laboratory
Urbana, IL

 Rocmop User's Guide Page 1�

Printed on Date:

5/14/07

Title: Rocmop User's Guide
Author: Phillip Alexander and Pornput Suriyamongkol (revision 3)
Subject: This document describes the use of the Rocmop module
Revision: 3.0
Revision History Revision 0: Initial Release: March 2005

Revision 1: Reformatted: December 2005

Revision 2: Documentation Week Update: December 2006
 Changed to Microsoft Word Format

Revision 3: Reorganized: March 2007
 Distinguished between Rocmop1 and Rocmop2

Effective Date: 05/02/2007

 Rocmop User's Guide Page 2�

Printed on Date:

5/14/07

1.0 Introduction

1.1 Rocmop Overview

Rocmop (mesh optimization) is a Roccom module which improves the quality of unstructured
volume meshes through nodal repositioning, a process referred to as mesh smoothing. Mesquite
is an externally developed serial mesh-smoothing utility which Rocmop instantiates to improve
each pane of the mesh in isolation. The module implements a simple averaging scheme to realign
shared nodes at pane interfaces. Tetrahedral and hexahedral elements are supported in Rocmop.
Currently it makes use of Mesquite version 0.95.

Currently Rocmop has 2 versions: Rocmop1 and Rocmop2. Rocmop1 requires that input meshes
contain complete ghost information, i.e., all 5 pconn blocks described in the Roccom user's guide
must be present. Rocmop2 requires only shared node information (pconn block 1) since it will
construct the rest itself. See section 3.0, “Building and Running” for instructions on compiling
with the different versions of Rocmop.

Rocmop is written in C++ and uses the Roccom framework. It builds on all platforms supported
by Rocstar 3. A control file can be used to set Rocmop's run-time options; alternatively, some
options can be set directly through the Rocmop API. Rocmop will operate on any unstructured
tetrahedral volume mesh which is properly registered through Roccom, and contains the required
pconn information.

1.2 Related Documents

The information in this guide is supplemented by the following documents:

• “Roccom User's Guide”

• “Rocin User's Guide”

• “Rocketeer User's Guide”

• “Rocmop Developer's Guide”

• “Rocstar 3 User's Guide”

2.0 Purpose and Methods

Rocmop is intended to provide parallel online smoothing of meshes during the course of a
simulation. The goals of this operation are twofold. First, it seeks to prolong the life of the
simulation by delaying element inversion, an event which currently terminates the run. Secondly,
the length of the time step which the solvers can handle is limited by mesh quality, so mesh
smoothing might enable larger time steps, reducing wall-clock time. A standalone version of

 Rocmop User's Guide Page 3�

Printed on Date:

5/14/07

Rocmop is also provided which is useful for improving meshes without running a full-blown
Rocstar 3 simulation.

Figure 1 illustrates the complete smoothing process.

2.1 Serial Pane Smoothing via Mesquite

Mesquite is a robust mesh smoothing package with a wide variety of smoothing algorithms,
quality measures, and termination criteria. Rocmop uses this tool to perform optimization via a
single iteration of a Feasible Newton solver, using the inverse mean ratio as a quality measure. A
separate instance of Mesquite is created to handle each pane of the mesh. When using Rocmop1,
these panes must include ghost cell information in the form of a Roccom pconn attribute.
Rocmop2 ignores any preexisting ghost information (pconn blocks 2-4), and generates this
information itself. The nodes on the pane boundary are fixed in place while Mesquite operates on
the volume interior.

2.2 Pane Interface Node Realignment

Nodes on the boundaries of two panes are often interior to both pane's meshes when ghost
information is considered. Therefore, smoothing of the mesh panes in isolation often results in
disagreement between panes on the location of a shared node. To address this issue, after
smoothing in isolation, each pane updates shared-node coordinates by setting them equal to the
average position of the node across all incident panes.

 Rocmop User's Guide Page 4�

Printed on Date:

5/14/07

2.3 Diagrams

Figure 1 Rocmop smoothing scheme

3.0 Building and Running

Rocmop is written in C++ and uses the Rocstar 3 makefile infrastructure. The source and
makefiles are found at /Rocstar/Rocmop/Codes in the CSAR CVS repository with the following
subdirectories:

Rocmop/Codes/Makefile
Rocmop/Codes/Makefile.basic
Rocmop/Codes/Makefile.in
Rocmop/Codes/include
Rocmop/Codes/src
Rocmop/Codes/test
Rocmop/Codes/util

A separate directory, Rocmop/Codes/External, contains Mesquite's source code.
Rocmop currently uses the 0.95 release of Mesquite, but the repository also contains v. 0.9, v.
1.1. and v. 1.1.4 for future development.

3.1 Library Dependencies

Rocmop is integrated into Rocstar 3, but it may also be built separately. Because Rocmop links
to several of Roccom's submodules - Rocsurf, Rocblas, Rocin, etc. - Roccom should be built

 Rocmop User's Guide Page 5�

Printed on Date:

5/14/07

before Rocmop. Rocin uses NCSA's HDF4 library and/or CGNS for managing file I/O.
Instructions on obtaining and installing HDF4 are found in the Rocstar 3 User's Guide. The
following commands will checkout the Roccom and Rocmop source files into ./Roccom and
./Rocmop respectively and will build Roccom's default dynamic libraries:

>$ cvs co -d Roccom Rocstar/Roccom/Codes
>$ cvs co -d Rocmop Rocstar/Rocmop/Codes
>$ cd Roccom
Roccom>$ gmake

Note that make may be used instead of gmake on some machines such as Turing. The Rocstar 3
User's Guide has more information on the Rocstar 3 makefile infrastructure and build options.

3.2 Building Rocmop

After the prerequisite libraries are built, Rocmop may be built as follows:

Roccom>$ cd ../Rocmop
Rocmop>$ gmake

This will produce Rocmop library files “libRocmop.dylib” and “libRocmop.so” in a directory
named “lib” at the same level as the “Rocmop” directory. In addition to the standard Rocstar 3
makefile options described in the Rocstar 3 User's Guide, Rocmop provides an additional flag,
ROCMOP, which builds different versions of Rocmop. The default version is Rocmop1.

Option Description
ROCMOP=Rocmop1 Build Rocmop1 (default)
ROCMOP=Rocmop2 Build Rocmop2

The default target of Rocmop's makefiles is Rocmop's dynamic library. Other targets are used to
clean up the Rocmop directory or to build the test programs and utility:

Target Description
clean Remove files created during building and linking, as well as .hdf files
add_aspect_ratios A test program which inserts values of aspect ration metric of an

existing meshes into new .hdf files
build_meshes A test program which creates a series of simple .hdf files of various

types
metric_demo A test program which illustrates the use of various quality metrics

smooth_volume A test program which smooths a .hdf file or series of .hdf files

ChkPconnGRecv A utility to test meshes if they all have complete pconns. Complete

 Rocmop User's Guide Page 6�

Printed on Date:

5/14/07

Target Description

pconn which lists all ghost nodes in its ghost receive block (block 3) is
required when using Rocmop2.

3.3 Running Rocmop (the Rocmop API)

This section describes the set of functions which is available through the Roccom framework
when Rocmop has been registered as a module. Its use is illustrated in “smooth_volume”, a test
program to smooth meshes outside of an actual simulation. This program is described in section
5.4.

smooth(const COM::Attribute *pmesh, COM::Attribute *disp)

Parameter Description
pmesh The Roccom pmesh attribute of the mesh to be smoothed. See the

Roccom User's guide for a description of the pmesh attribute
disp A nodal buffer with three components of type COM_DOUBLE. It is the

responsibility of a caller to allocate memory for disp. At exit, it contains
a displacement, which, when added to the current nodal coordinates of
the mesh, produces a smoothed mesh

set_value(const char* opt, const void* value)

Parameter Description
opt Name of the option to modify (see the table below)
value New value of the option

 Rocmop User's Guide Page 7�

Printed on Date:

5/14/07

Rocmop options accessible through set_value() include:

4.0 Input and Output (User Interface)

Rocmop is typically loaded and invoked through the Roccom API. Options may be set through
set_value(), but the module also looks for a control file, and , if it is present, sets a subset of the
run-time options based on the contents of that file.

4.1 Use as a Roccom Module

This C++ example shows how to use Rocmop through the Roccom framework:

// Load Rocmop into the Roccom framework
COM_LOAD_MODULE_STATIC_DYNAMIC(Rocmop, “MOP”);

// Get function handle for Rocmop::smooth(...)
int MOP_smth = COM_get_function_handle(“MOP.smooth”);

// Call Rocmop::smooth.
// VOL_pmesh is a handle for the pmesh attribute of the mesh
// to smooth.
// VOL_disp is a handle to the nodal displacement buffer.
COM_call_function(MOP_smth, &VOL_pmesh, &VOL_disp);

Option Value Type Values Description
verbose int Integers ≥ 0 Verbosity level (0 - 6), used for debugging. Default

value is 0, the lowest level
method int 0 Perform volume smoothing on an unstructured

tetrahedral or hexahedral volume mesh. Currently no
other valid options

lazy int 0,1 Check mesh quality before smoothing?
tol float (0.0,180.0) If lazy option is set, mesh only smoothed if

maximum dihedral angle exceeds tol
maxdisp float ≥ 0.0 Scale nodal displacement returned by Rocmop so

that no node is displaced more than maxdisp. If set to
0.0, no scaling is performed

inverted int 0,1 Set to 1 if tetrahedral node ordering is inverted
according to the standards provided in the Roccom
User's Guide. Rocflu is an example of a module that
uses inverted convention.

 Rocmop User's Guide Page 8�

Printed on Date:

5/14/07

The source code for the test programs serve as a more complete template for using Rocmop in
the Roccom framework. For examples, smooth_volume and add_aspect_ratios illustrate how to
use Rocmop to smooth meshes and compute mesh quality statistics respectively.

4.2 Control File Format

When the Rocmop module is loaded through Roccom, the library automatically looks for the file
“RocmopControl.txt”. Figure 2 shows the locations where Rocmop looks for a control file. In the
case of an integrated simulation, this file should be placed in Rocmop directory in dataset
directory. However, if Rocmop is being run in standalone mode through one of the test
programs, the control file should be placed in Rocmop directory in the current directory.

Integrated Simulation Standalone Mode
 Data Set

 ∟ Rocmop

 ∟ RocmopControl.txt

 Current Directory

 ∟ Rocmop

 ∟ RocmopControl.txt

Figure 2 Locations where Rocmop control file for integrated simulation (left) and standalone mode (right)

If a control file is found, Rocmop sets an ordered list of options to the values found in the file.
Lines beginning with either an empty space or '#' are ignored. The order of the values in the
control file corresponds to the following list of Rocmop options: verbosity, method, lazy, tol,
maxdisp, N and disp_thresh. With the exception of the last two entries, these options are also
accessible through set_value(). N accepts an integer value, and when set to anything other than
0, the mesh is smoothed every Nth step. Rocmop is disabled if N is set to 0. Disp_thresh takes a
float value. When it is set to a value other than 0.0, Rocmop adds the largest magnitude
displacement of the input nodal displacements at each call to smooth(). When this running total
exceeds disp_thresh, mesh smoothing is performed. Here is an example Rocmop control file:

RocmopControl.txt

Verbosity
1

#Smoothing Method
0

#Lazy?
0

#Tolerance
165.0

#Max disp
0.0

#N (smoothing frequency)
1

 Rocmop User's Guide Page 9�

Printed on Date:

5/14/07

#Disp Tol (only smoothed when this disp reached)
0.0

End RocmopControl.txt

5.0 Examples, Test Problems and Utility

There are five example programs, which are add_aspect_ratios, smooth_volume, build_meshes,
metric_demo, chkPconnGRecv. The first two programs are in parallel while the rest are in serial.
This section describes each program and its usage.

5.1 add_aspect_ratios

Usage:
>$add_aspect_ratios <Rocin input file> <material name>

This program reads in an .hdf file specified in <Rocin input file>, calculates aspect ratio metrics
and associated values on the mesh, and prints out the new .hdf file with the metrics attached as
elemental attributes. The new attributes are circumradius (R), inradius (r), shortest edge length
(l), 3r/R, R/r, R/l, minimum dihedral angle, and maximum dihedral angle. Users specify material
name for the output .hdf file through <material name>.

5.2 build_meshes

Usage:
>$build_meshes

Build_meshes creates a series of small unstructured meshes which are useful for debugging and
testing smoothing procedures. By design, each mesh contains at least one poorly placed interior
node. These meshes are written out to .hdf files. Partitioned meshes created include the shared-
node section of the pconn, but none of the ghost sections. See the Roccom User's Guide for a
description of the different blocks of the pconn attribute.

File Mesh Description
unstr_hex0000.hdf Serial hexahedral mesh with 8 elements and 27 nodes
unstr_prism0000.hdf Serial prismatic mesh of 8 elements and 15 nodes
unstr_prism_tet0000.hdf Serial mixed element mesh consisting of 8 prisms, 4 tetrahedrons,

and 16 nodes
unstr_prism_tet_20000.hdf Partitioned mixed element mesh with 32 prisms, 27 tetrahedrons

and 46 nodes per partition.
unstr_pyr0000.hdf Serial pyramidal mesh with 6 elements and 9 nodes.
unstr_tet_2000.hdf A two-partition mesh with 27 nodes and 48 tetrahedrons per

partition.

 Rocmop User's Guide Page 10�

Printed on Date:

5/14/07

5.3 metric_demo

Usage:
>$metric_demo

This program demonstrates the usage of the mesh quality metrics classes by calculating
Algebraic and Geometric mesh quality metrics on various triangles, tetrahedrons, quadrilaterals,
and hexahedrons.

5.4 smooth_volume

Usage:
>$smooth_volume <Rocin input file> <Output file prefix> <Niter>
<Invert Tets>

Smooth_volume is used to smooth a fluids mesh contained in an .hdf file, or series of .hdf files,
without running an integrated Rocstar 3 simulation. The <Rocin input file> specifies the input.
See the Rocin User’s Guide for more information on Rocin control files. The program also looks
for a Rocmop control file in Rocmop directory in the current directory, and if found, sets
Rocmop's run-time options from this file as described in section 4.2. Unlike Rocstar 3,
smooth_volume does not require a process per mesh partition, and may even be used in serial to
smooth a partitioned mesh if both Roccom and Rocstar 3 are compiled with the DUMMY_MPI
flag set. The smoothed mesh is written back out to an .hdf file whose name begins with <Output
file prefix>. <Niter> sets the number of iterations of smoothing to make. <Invert Tets> should be
set to a nonzero value if tetrahedral elements are inverted with respect to Roccom conventions,
which is the case with the Rocflu fluids module.

5.5 chkPconnGRecv

Usage:
>$chkPconnGRecv <sample filename> <number of partitions> <index
base> <option>

chkPconnGRecv is the utility to check pconns in all meshes if they list all the ghost nodes in
their ghost receive block (block 3). The completeness of pconn is required in order to update
ghost nodes through the communication and is crucial when using Rocmop2. The <sample
filename> specifies an example of the input filenames. <index base> specifies what the first
partition is numbered (0 or 1). If <option> is set to 1 the utility writes out the ghost nodes
missing from the pconn in Tecplot format.

