
 Rocmop Developer's Guide 4/12/07

Rocmop Developer’s Guide

Center for Simulation of Advanced Rockets
University of Illinois at Urbana-Champaign

2270 Digital Computer Laboratory
Urbana, IL

 Rocmop Developer's Guide Page 1�

Printed on Date:

4/12/07

Title: Rocmop Developer's Guide
Author: Phillip Alexander and Pornput Suriyamongkol (revision 3)
Subject: This document describes the design of the Rocmop module
Revision: 3.0
Revision History Revision 0: Initial Release: March 2005

Revision 1: Reformatted: December 2005

Revision 2: Documentation Week Update: December 2006
 Changed to Microsoft Word Format

Revision 3: Reorganization: April 2007
 Distinguished between Rocmop1 and Rocmop2

Effective Date: 04/13/2007

 Rocmop Developer's Guide Page 2�

Printed on Date:

4/12/07

0.0 Introduction and Related Documents

Rocmop is a Roccom module which improves the quality of unstructured tetrahedral volume
meshes through nodal repositioning, a process referred to as mesh smoothing. Mesquite is an
externally developed serial mesh-smoothing utility which Rocmop instantiates to improve each
pane of the mesh in isolation. A simple averaging scheme realigns shared nodes at pane
interfaces. See the Rocmop User's Guide for a more in-depth introduction to Rocmop. The
Roccom User's Guide is another invaluable to any developer working within the Roccom
framework. Another useful resource is the Rocmap User’s and Developer’s guide which
describes many of the classes used by Rocmop.

1.0 Algorithm and Features

Rocmop enables parallel on-line mesh optimization without inducing topological changes on the
mesh. This form of mesh optimization, in which nodal repositioning is the only operation, is
referred to as smoothing. In Rocmop, smoothing is performed in two stages. First, each
individual pane is smoothed via an externally developed serial package, Mesquite. The default
Rocmop1 requires that this pane include ghost information in the form of a complete five-section
pconn attribute as described in the Roccom User's Guide. If Rocmop2 is used, it constructs this
information itself ignoring any existing pconn. When Mesquite is called to optimize the mesh,
the boundary of the pane is fixed and nodes on the volume interior are repositioned (see Figure
1). Due to the inclusion of the ghost part of the mesh in the serial step, nodes at real pane
boundaries often receive different optimized positions across their incident meshes. Rocmop
uses a simple averaging scheme to realign these nodes as shown in Figure 2 below.

Figure 1 Pane boundary is fixed during the smoothing

Real Part

Ghost Part

Pane boundary of all
elements (both real and
ghost parts) is fixed.

 Rocmop Developer's Guide Page 3�

Printed on Date:

4/12/07

Figure 2 Rocmop smoothing scheme

2.0 Rocmop Implementation

This section explains the implementation of the algorithm in previous section. Rocmop smoothes
a mesh inside Rocmop::smooth() (see section 3.3 for more details). Rather than directly
smoothing and updating nodal coordinates the input mesh, Rocmop maintains its own buffer
window (_buf_window). It then smoothes the buffer window and returns a displacement array,
which, when added to the original coordinates, produces a smoothed mesh.

Figure 3 shows typical smoothing procedure inside smooth(). On the first call to smooth(),
Rocmop clones the input window (_usr_window) and store it in its buffer window
(_buf_window). If Rocmop2 is used, 2nd order ghost layer in _buf_window is constructed at this
time. Having these windows set up, Rocmop smoothes _buf_window and returns the
displacements to the caller. The caller then adds these displacements to its nodal coordinates
producing smoothed mesh. On subsequent calls to smooth(), Rocmop updates nodal coordinates
in _buf_window, then performs smoothing and returns the displacement array.

 Rocmop Developer's Guide Page 4�

Printed on Date:

4/12/07

Figure 3 Smoothing process in Rocmop::smooth() function

Currently Rocmop takes its input mesh from Rocflu. Usually, the nodal coordinates of the ghost
part from Rocflu are incorrect. Thus Rocmop returns displacements of ghost nodes consisting of
2 quantities: 1) coordinate correction and 2) displacements to smooth them. As a result, these
displacements can be very large (especially when the coordinates of the input ghost nodes are
significantly off) and do not respect the maximum allowable displacement. Figure 4 shows how
the displacements are determined in Rocmop2 after buffer window is smoothed by Mesquite.

Start Rocmop::smooth()

_buf_window exists?

Finish Rocmop::smooth()

Copy the input window to
_buf_window. If Rocmop2
is used, construct pconn.

Update nodal coordinates
in _buf_window

Smooth _buf_window
using Mesquite

Get disp array, which, when added to
nodal coordinates in _usr_window,
produces a smoothed mesh.

No Yes

 Rocmop Developer's Guide Page 5�

Printed on Date:

4/12/07

Figure 4 Algorithm to determine displacements in Rocmop2

Although Figure 4 shows a reasonable algorithm, it is not implemented in Rocmop1. The
algorithm that Rocmop1 currently uses is shown in Figure 5. It should be noted that this
algorithm would result in incorrect coordinates of ghost nodes when the displacements are scaled
down to not exceed the maximum allowable displacement.

Figure 5 Algorithm to determine displacements in Rocmop1

3.0 Organization

3.1 Rocmop's Classes

Rocmop: the main smoothing class, Rocmop implements the Roccom module interface and is in
charge of using Mesquite to smooth panes in isolation as well as realigning shared nodes through
its own member functions. Rocmop has a variety of run-time options which affect its operation.
These options are described in the Rocmop User's Guide.

MesqPane: implements the Mesquite mesh interface for Roccom's pane class.

3.2 External Classes

Rocmap::Pane_communicator: abstracts inter-pane communication by providing reduction
operations for communicating information on shared nodes. This class is also used to update
values stored on ghost nodes or cells with the current value on the corresponding real mesh
entities. Pane_communicator requires a full five-section pconn attribute, which is why Rocmop
also requires this information.

Rocmap::Pane_dual_connectivity: the list of nodes incident on each element is readily
available through mesh connectivity tables. This class provides a list of elements incident on
each node, information required by Mesquite.

Real Part Ghost Part
1. Get displacements of real nodes smoothed - original coordinates -
2. Scale displacements of real nodes if necessary * scale if necessary -
3. Update smoothed NC of real nodes + original coordinates -
4. Update smoothed NC of ghost nodes - Rocmap::update_ghost(disp)
5. Get displacments - original coordinates - original coordinates

Steps disp Array

Real Part Ghost Part
1. Get displacements smoothed - original coordinates smoothed - original coordinates
2. If any displacement of real nodes > the limit * scale if necessary * scale if necessary
 Scale down the whole disp array

Steps disp Array

 Rocmop Developer's Guide Page 6�

Printed on Date:

4/12/07

Rocmap::Pane_boundary: used to determine which nodes are on the boundary of each pane.
Mesquite is not allowed to reposition these nodes when smoothing the mesh.

3.3 Important Rocmop Subroutines

check_dispalcements(
 COM::Attribute *w_disp)

Calculates the maximum nodal displacement across the entire window, and adds this value to a
running total. If the running total exceeds the set displacement threshold, then reset the running
total to 0 and returns true else, returns false.

Parameter Description
w_disp A nodal attribute with three components of type COM_DOUBLE.

constrain_displacements(
 COM::Attribute * w_disp)

If necessary, scales a nodal displacement attribute so that the maximum allowable displacement
is not exceeded for any real node.

determine_pane_border()

Determines which nodes and elements are on the border of the pane and stores this information
into is_pane_bnd_node and is_pane_bnd_elem data structures.

determine_shared_border()

Examines the pconn to determine which nodes are shared with a neighboring pane. Stores the
result in is_shared_node data structure.

mark_elems_from_nodes(
 std::vector<std::vector<bool> > &marked_nodes,
 std::vector<std::vector<bool> > &marked_elems)

Takes a Boolean per-node property, and determines which elements contain a node which has
that property. This is used, for example, to determine which elements touch the physical surface
of a pane. The outer vector corresponds to local panes, the inner vector to real nodes or real
elements.

 Rocmop Developer's Guide Page 7�

Printed on Date:

4/12/07

print_extremal_dihedrals(
 COM::Window* window)

Prints the minimum and maximum dihedral angle across the entire window as well as the pane id
of that element, and the id of the element where the extreme value occurs.

set_value(
 const char* opt,
 const void* value)

Used to set Rocmop's run-time parameters.

Parameter Description
opt Name of the option to modify (see the table below)
value New value of the option

Rocmop options accessible through set_value() include:

Option Value Type Values Description
verbose int Integers ≥ 0 Verbosity level, used for debugging. Default value is

0, the lowest level
method int 0 Perform volume smoothing on an unstructured

tetrahedral volume mesh. Currently no other valid
options

lazy int 0,1 Check mesh quality before smoothing?
tol float (0.0,180.0) If lazy option is set, mesh only smoothed if

maximum dihedral angle exceeds tol
maxdisp float ≥ 0.0 Scale nodal displacement returned by Rocmop so

that no node is displaced more than maxdisp. If set to
0.0, no scaling is performed

inverted int 0,1 Set to 1 if tetrahedral node ordering is inverted
according to the standards provided in the Roccom
User's Guide

 Rocmop Developer's Guide Page 8�

Printed on Date:

4/12/07

smooth(
 const COM::Attribute *pmesh,
 COM::Attribute *disp)

Smoothes the mesh associated with pmesh, and returns the displacement to the new nodal
coordinates. See the Rocmop User's Guide for a description of the run-time options which affect
how this process.

Parameter Description
Pmesh The Roccom pmesh attribute of the mesh to be smoothed. See the Roccom

User's guide for a description of the pmesh attribute
disp A nodal buffer with three components of type COM_DOUBLE. At exit, it

contains a displacement, which, when added to the current nodal
coordinates of the mesh, produces a smoothed mesh

3.4 Important MesqPane Subroutines

MesqPane implements the Mesquite interface defined in

Rocmop/External/mesquite_0_9_5/include/MeshInterface.hpp

The majority of the interface functions are basic mesh operations which are easily understood
from source code comments. However, there are a few exceptions which are described here.
Rocmop currently uses MesqPane_95.h and MesqPane_95.C which implement Mesquite v. 0.95
interface. Though not fully tested, MesqPane_1_1.h and MesqPane_1_1.C implement Mesquite
v.1.1.4 interface and are stored in Rocmop/include/etc and Rocmop/src/etc
respectively.

void invert()

Inverts all of the elements in a tetrahedral mesh by swapping the 2nd and 4th node ids in the
connectivity table. This function is used to repair Rocflu's meshes which use a different
tetrahedron node ordering standard than Roccom.

void init()

Allocates memory, builds dual connectivity tables, and determines the panes border nodes.

 Rocmop Developer's Guide Page 9�

Printed on Date:

4/12/07

void tag_create(
 const msq_std::string& tag_n,
 TagType type,
 unsigned length,
 const void* default_value,
 MsqError &err)

Similar to Roccom's attributes, Mesquite uses tags to store mesh information associated with
mesh entities. This function creates a new tag with the given name, creates a vector for storing
its data, and adds the tag to a mapping from tag names to tag objects.

4.0 Data Structures

Other than scalar values and pointers to objects of externally defined classes, Rocmop contains
only one interesting data structure, which is used to store boolean information on a node-by-node
basis:

std::<vector<std::vector<bool> > _is_shared_node;

The outer vector indexes local panes, while the interior vector indexes the nodes on that pane.
Other class members which use the same data structure include the following:

_is_shared_elem
_is_phys_bnd_node
_is_phys_bnd_elem
_is_pane_bnd_node
_is_pane_bnd_elem

5.0 Mesquite Usage in Rocmop

Mesquite is a complicated package which provides a wide variety of smoothing algorithms,
quality measures, and termination criteria. In the interest of reducing the computational intensity
of mesh smoothing, Rocmop's only uses Mesquite to perform a single iteration of a Feasible
Newton solver to improve the mesh, using the inverse mean ratio as a quality measure. This
design choice induces limitations which must be taken into account when using the module, both
in terms of the meshes which it will accept, and in terms of the degree of optimization
achievable.

Although Mesquite provides untangling routines, Rocmop does not make use of them. Therefore,
the mesh passed to Mesquite should not contain any inverted elements. The smoothing package
will detect these elements and not perform any optimization on the mesh. Element inversion is
already a simulation-halting event, so this design choice seems reasonable.

The choice of only using a single iteration of the Feasible Newton solver also has ramifications.
This algorithm improves mesh quality monotonically, so we do not need to worry that early

 Rocmop Developer's Guide Page 10�

Printed on Date:

4/12/07

termination will degrade the discretization. However, cases have been observed in which the
mesh deforms so rapidly that Mesquite is unable to move interior nodes quickly enough to keep
ahead of the moving physical boundary, eventually leading to mesh deformation. This situation
is overcome by either taking shorter time steps, or through multiple calls to Rocmop at each time
step.

Little attention has been paid to the node-realignment step of the smoothing process mentioned
earlier in this paper. The method is literally two steps: average shard node positions across pane
boundaries and then update the positions of the corresponding ghost nodes. Despite the
simplicity of the algorithm, acceleration of quality degradation at pane boundaries has not been
observed, although the possibility of such behavior remains a concern.

