
 Rocmap User's and Developer's Guide 1/19/07

Rocmap User’s and Developer's Guide

Center for Simulation of Advanced Rockets
University of Illinois at Urbana-Champaign

2270 Digital Computer Laboratory
Urbana, IL

 Rocmap User's and Developer's Guide Page 1�

Printed on Date:

1/19/07

Title: Rocmap User's and Developer's Guide
Author: Phillip Alexander
Subject: This document describes the Rocmap module
Revision: 1.0
Revision History Revision 0: Initial Release : December 2005

Revision 1.0: Documentation week update : January 2007
Effective Date: 1/19/07

 Rocmap User's and Developer's Guide Page 2�

Printed on Date:

1/19/07

1.0 Introduction

1.1 Rocmap Overview

Rocmap provides a small set of commonly used functions for communication among mesh panes
in the Roccom framework. It is implemented in C++ and uses the Roccom framework. Typically,
Rocmap's static member functions are called from within other Roccom modules. Nevertheless,
an interface is provided for using Rocmap as a Roccom module. It builds on all platforms
supported by Rocstar 3.

1.2 Related Documents

The information in this guide is supplemented by the following documents:

• “Roccom User's Guide”.

• “Rocin User's Guide”.

• “Rocketeer User's Guide”.

• “Rocstar 3 User's Guide”.

2.0 Purpose and Methods

Rocmap aids in the development of Roccom modules dealing with partitioned meshes by
providing commonly required inter-pane communication functions. An API provides access to a
few of these functions when the Rocmap module is loaded into the Roccom framework. Other
functionality is available at a lower level through C++ classes. See 3.3 discusses Rocmap as a
Roccom module. The important Rocmap classes are discussed in this section.

2.1 Dual_connectivity

Element connectivity tables are a fundamental piece of a Roccom mesh. These tables list the
nodes which constitute each particular element. The dual connectivity table is a similar structure
which lists elements contained in a particular node. Roccom does not require the registration of
a dual connectivity table, but this class is available for compiling and accessing that information.

2.1.1 Constructors

explicit Pane_dual_connectivity(const COM::Pane *p, bool with_ghost = true)

Construct a Pane_dual_connectivity for pane p. If with_ghost is true, then include ghost entities
in the construction.

 Rocmap User's and Developer's Guide Page 3�

Printed on Date:

1/19/07

2.1.2 Important Member Functions

void incident_elements(int node_id, std::vector<int>& elists)

Fills elists with the list of elements containing the node with local id node_id.

2.2 Pane_boundary

Determines which nodes are on pane boundaries and which nodes are isolated. An Isolated node
is one which does not belong to any element. This can happen when a surface mesh is extracted
from a volume mesh. If an element of the volume mesh touches the surface with only a single
node, then that node will be isolated in the surface mesh.

2.2.1 Algorithms

Isolated nodes are determined in a straight forward fashion. The isolated node vector is
initialized to false for every node. Then, a pass is made over the element connectivity table(s)
during which every node seen is marked as not isolated.

Determining which nodes (and facets) are on the border is slightly more complicated.
Conceptually, this algorithm is simply facet matching. Facets which are not on the border are
sandwiched between two elements. If we consider facets as unordered sets of nodes, then these
facets are duplicated on the adjacent elements. Therefore, finding unique facets is equivalent to
finding the border.

Again, a pass is made over the element connectivity table(s). An inner loop iterates through
every facet of the current element. A four-tuple is created from the ids of the facet’s constituent
nodes. If the facet is triangular, then -1 is used as the fourth node id. We compare the four-tuple
to the set of all those already seen. If we find a duplicate, then both four-tuples are discarded.
After the entire element connectivity is processed, we are left with the set of border faces from
which computing border nodes is trivial.

2.2.2 Constructors

Pane_boundary(const COM::Pane *p)

Build a Pane_boundary for pane p.

Pane_boundary(const Simple_manifold_2 *pm)

Build a Pane_boundary for the pane associated with the given manifold.

 Rocmap User's and Developer's Guide Page 4�

Printed on Date:

1/19/07

2.2.3 Other member functions

determine_border_nodes(
 std::vector<bool> &is_border,
 std::vector<bool> &is_isolated,
 std::vector<Facet_ID > *b=NULL,
 int ghost_level=0) throw(int)

Sets is_border[node_id -1] to true if the node assocaited with the id is on the border, and to
false otherwise. Stores similar information for isolated nodes in is_isolated. If b is not NULL,
then it is filled with the set of faces which are on the pane border. The interpretation of
ghost_level is differenrt for structured and unstructured meshes. If the target pane has a
structured mesh, it determines how many ghost layers to include in the calculation. If
ghost_level > 0 and the mesh is unstructured, the all registered ghost entities are considered.

static void determine_borders(
 const COM::Attribute *mesh,
 COM::Attribute* is_border,
 int ghost_level = 0)

Determines border nodes for the entire window associated with mesh and stores this information
in is_border. The ghost_level parameter is the same as in determine_border_nodes. Note
that the attribute stored is still pane border, and not the border of the mesh as a whole.

2.3 Pane_ghost_connectivity

Adds a single layer of ghost elements to each pane by constructing and registering the complete
5-block pconn for the mesh as defined in the Roccom User’s Guide. This is a single layer of
ghost elements in the sense that all non local elements incident on a local real node are ghosted
as are any nodes which are contained in these elements but not local to the pane. In Rocflu’s
terminology, this is a second-order mesh.

2.3.1 Algorithms

The basic idea of this algorithm is that each pane determines which local elements should be
ghosted on other panes, and sends the connectivity information for those local elements to the
appropriate panes. Shared node information is built using the Pane_connectivity class, then each
local element is examined. If the local element contains a shared node, then the element is added
to a set of elements which needs to be sent to the pane(s) with which that node is shared. After
all elements have been examined, we can calculate how much information is to be sent to each
adjacent pane. This size information is communicated, followed by the actual connectivity data.
After all connectivity information is received, the pconn is constructed and registered.

Roccom itself does not use a global order for nodes or elements, however, we need that
information because we will sometimes receive elements from multiple panes which share the

 Rocmap User's and Developer's Guide Page 5�

Printed on Date:

1/19/07

same non local node, and we have to recognize that this is a single ghosted node rather than two
separate nodes.

2.3.2 Constructors

Pane_ghost_connectivity(COM::Window *window)

Construct a Pane_ghost_connectivity for window window.

2.3.3 Important Member Functions

void build_pconn()

This is the highest level function, it builds and registers the pconn.

void init()

The initialization routine builds and registers the shared-node section of the pconn. It also
determines border nodes, obtains a list of communicating panes, and creates data structures for
the total node ordering.

void get_node_total_order()

Obtains a total ordering of nodes in the form of an ordered pair <P,N> where P is the “owner
pane” and N is the node’s local id on the owner pane. The “owner pane” is the pane with highest
id which contains a real copy of the node. For each node, N is initialized to 0 and P is initialized
to the local pane id. Then, the shared node section of the pconn is examined. P is updated each
time a node is found being shared with a pane with a higher pane id than the currently stored
value. At this point, all the owner panes have been determined. Each node owned by the local
pane is now assigned its local node id as the N value. An MPI maximum reduction is performed
on the N values to finalize the total ordering.

void get_ents_to_send(
 vector<vector<vector<int> > > &gelem_lists,
 vector<vector<map<pair<int,int>,int> > > &nodes_to_send,
 vector<vector<deque<int> > > &elems_to_send,
 vector<vector<int> > &comm_size)

This function determines the local elements and nodes to be remotely ghosted on communicating
panes. A dual connectivity data structure is built which allows for querying which elements are
adjacent to each node. The list of nodes shared with each communicating pane is examined, and
all elements containing any of these nodes are added to a set to be sent to the communicating
pane. Simultaneously, the eventual size of the element connectivity information to send is
calculated and stored. Each elements type and node list (as <P,N> pairs) will be sent. The actual
information to be send is written to gelem_lists, while the lists of the local nodes and elements to
be remotely ghosted are stored in nodes_to_send and elems_to_send.

 Rocmap User's and Developer's Guide Page 6�

Printed on Date:

1/19/07

Roccom requires that the elements listed in one pane’s real-elements-to-send list correspond to
the element listed in the same index of the communicating pane’s ghost-elements-to-receive list,
and similarly for the ghost node communication sections. We fulfill this requirement as follows.
Owner panes list real-elements-to-receive in the same order that the elements are placed in the
gelem_lists data structure, and the pane which ghosts the elements maintains this ordering.
Similarly, as element connectivities are written into the gelem_lists structure, the owner pane
checks to see if the node is already shared with the communicating pane. If not, then that node
will need to be ghosted on the remote pane. These nodes are listed in the real-node-to-share list
in the same order that they are first observed. When the remote pane processes the element
connectivity lists, the same method is used.

void process_received_data(
 vector<vector<vector<int> > > &recv_info,
 vector<vector<int> > &elem_renumbering,
 vector<vector<map<pair<int,int>,int> > > &nodes_to_recv)

Determines the number of ghost nodes to receive, assigns them local ghost node ids, and maps
<P,N> to those ids. Also determine the number of ghost elements of each type to receive. Ghost
element ids can not be determine as elements arrive if we want to have a single connectivity
table per element type because Roccom requires that elements in a single connectivity table be
numbered consecutively.

void finalize_pconn(
 vector<vector<map<pair<int,int>,int> > > &nodes_to_send,
 vector<vector<map<pair<int,int>,int> > > &nodes_to_recv,
 vector<vector<deque<int> > > &elems_to_send,
 vector<vector<int> > &elem_renumbering,
 vector<vector<vector<int> > > &recv_info)

Takes the data we’ve collected, and builds and registers the pconn. The shared node information
is already present, so there are four blocks to build: real-nodes-to-send, ghost-nodes-to-receive,
real-elements-to-send and ghost-elements-to-receive. Data for the first three of these blocks is
available in the correct order from the first three input parameters to the function. Creating the
ghost-elements-to-receive block of the pconn requires combining information in the latter two
data structures.

First, the input data structures are examined to determine the size of each ghost block of the
pconn. Connectivity tables are resized to accommodate the new ghost entries, and the pconn is
resized to accommodate the four new blocks. Next we actually fill in the new sections of the
pconn. We also fill in the ghost element’s connectivity into the correct connectivity table by
taking into account both the element’s type and the order in which it was received. Finally, we
extend the nodal coordinate attribute to accommodate the new ghost nodes, and update those
coordinates from their real coordinates using the newly created pconn.

void get_cpanes()

 Rocmap User's and Developer's Guide Page 7�

Printed on Date:

1/19/07

Get the list of communicating panes for each local pane. A communicating pane is any pane with
which this pane shares a node. This data is stored in _cpanes.

void send_gelem_lists(
 vector<vector<vector<int> > > &gelem_lists,
 vector<vector<vector<int> > > &recv_info,
 vector<vector<int> > &comm_sizes)

Send ghost element connectivity lists to the communicating panes.

void send_pane_info(
 vector<vector<vector<int> > > &send_info,
 vector<vector<vector<int> > > &recv_info,
 vector<vector<int> > &comm_sizes)

Sends an arbitrary amount of data to the communicating panes.

void determine_shared_border()

Determines whether or not each local node is shared.

void mark_elems_from_nodes(
 vector<vector<bool> > &marked_nodes,
 vector<vector<bool> > &marked_elems)

Takes the given Boolean nodal property, and extends that property to elements. An element is
considered to have the property if any of its constituent nodes have the property.

3.0 Building and Running

Rocmap is written in C++ and uses the Rocstar 3 makefile infrastructure. The source and
makefiles are found at /Rocstar/Roccom/Codes/Rocmap in the CSAR CVS repository in the
following locations:

Rocmap/Makefile
Rocmap/Makefile.basic
Rocmap/Makefile.in
Rocmap/include/
Rocmap/src/
Rocmap/test/
Rocmap/util/

During the building process, two additional directories are created at the same level as Roccom:

bin
lib

 Rocmap User's and Developer's Guide Page 8�

Printed on Date:

1/19/07

The former contains utility programs automatically built by the makefiles, while the latter
contains all libraries including Roccom's and Rocmap's.

3.1 Library Dependencies and Building

Rocmap is integrated into Rocstar 3 and is built along with Roccom. Because Rocmap links to
the Roccom library, it may only be built directly from its own directory if the Roccom library
already exists. The following commands will checkout the Roccom source files into ./Roccom
and build Roccom's default dynamic libraries which include Rocmap's:

>$ cvs co -d Roccom Rocstar/Roccom/Codes
>$ cd Roccom
Roccom>$ gmake

Note that some machines may require the use of make instead of gmake. The Rocstar 3 User's
Guide has more information on the Rocstar 3 makefile infrastructure and build options and
additional information on compiling Roccom is found in the Roccom User's Guide.

3.2 Rocmap Build Targets

The default Roccom build creates the Rocmap dynamic library as well as a Rocmap utility
named “addpconn”. Several other test programs are included in Rocmap/test, and may be built
individually:

Rocmap>$ gmake <test program>
Rocmap>$ gmake

Test Program Description
bordertest_hex Demonstrates determination of pane borders through Rocmap on an

unstructured hex mesh.
Builds an unstructured hex mesh and uses Rocmap to determine which
nodes are on the border. Dumps the mesh into an .hdf file, “hexmesh”,
with node border information stored in the attribute “borders”.

bordertest_struc Demonstrates determination of pane borders through Rocmap on a
structured hex mesh.
Creates a structured hex mesh, determines which nodes are on the pane
border, and dumps the mesh into an .hdf file, “strucmesh”

3.3 Roccom Accessible Functions (Rocmap API)

This section describes the set of functions which is available through the Roccom framework
when Rocmap is registered as a module. All of these functions are static void member function
of the Rocmap class.

 Rocmap User's and Developer's Guide Page 9�

Printed on Date:

1/19/07

compute_pconn(
 const COM::Attribute *mesh,
 COM::Attribute *pconn)

Computes the first block of the pconn attribute described in the Roccom User's Guide. If pconn
hasn't been initialized, then memory is allocated and the computed pconn block is saved.
Otherwise, saves up to the capacity of the attribute.

Parameter Description
*mesh The target mesh.
*pconn The target mesh's pconn attribute.

pane_border_nodes(
 const COM::Attribute *mesh,
 COM::Attribute *isborder,
 int *ghost_level=NULL)

Determines which nodes are on the pane border, and saves this information to a Roccom
attribute.

Parameter Description
*mesh The target mesh.
*isborder Attribute where border information will be saved.
*ghost_level If > 0, include ghost nodes and elements as part of the pane.

reduce_average_on_shared_nodes(
 COM::Attribute *att,
 COM::Attribute *pconn = NULL)

Calculates an average attribute value for each shared node across all sharing panes, and sets the
attribute value to that average on all sharing panes.

Parameter Description
*att Target attribute
*pconn Pconn of the mesh corresponding to the target attribute

reduce_maxabs_on_shared_nodes(
 COM::Attribute *att,
 COM::Attribute *pconn=NULL);

Sets the value of each component of an attribute to the value of that component of the attribute
with the largest magnitude. Note that this is done on a component by component basis, not in the
sense of any norms.

 Rocmap User's and Developer's Guide Page 10�

Printed on Date:

1/19/07

Parameter Description
*att Target attribute
*pconn Pconn of the mesh corresponding to the target attribute

update_ghosts(
 COM::Attribute *att,
 COM::Attribute *pconn = NULL)

Sets the value of an attribute at ghost nodes or cells to the value on the corresponding real nodes
or cells. In the case that a shared node has different values across its incident panes, it is
undetermined which value each ghost node will receive.

Parameter Description
*att Target attribute
*pconn Pconn of the mesh corresponding to target attribute

3.4 Other Functions (Rocmap API)

Rocmap()

Rocmap's constructor, does not perform any initialization.

static void load(const std::string &mname)
static void unload(const std::string &mname)

These functions are used for loading or unloading Rocmap from Roccom with the given module
name.

4.0 Input and Output (User Interface)

Rocmap if typically used as a C++ object, though its functions other than the constructor are all
static, so no instantiation is required. It may also be loaded as a Roccom module, and called
through the standard Roccom interface.

4.1 Rocmap as a C++ Object

The following code fragment demonstrates the use of Rocmap as a C++ object:

// Assuming that “window” is a pointer to a Roccom window
// move shared nodes to their average position across all
// incident panes
Rocmap::reduce_average_on_shared_nodes(window->

 Rocmap User's and Developer's Guide Page 11�

Printed on Date:

1/19/07

 attribute(COM::COM_NC));

// Update the ghost copies of the nodes with their new positions
Rocmap::update_ghosts(window->attribute(COM::COM_NC),
 window->attribute(COM::COM_PCONN));

4.2 Rocmap as a Roccom Module

Rocmap is typically loaded and invoked through the Roccom API as illustrated in the following
C++ example:

// Load Rocmap into the Roccom framework
COM_LOAD_MODULE_STATIC_DYNAMIC(Rocmap, “MAP”);

// Get function handle for Rocmap::compute_pconn
int MAP_compute_pconn =
 COM_get_function_handle(“MAP.compute_pconn”);

// Get the handle for the fluids mesh
int mesh_hdl = COM_get_attribute_handle(“fluids.mesh”);

// Get the handle for the pconn attribute of the fluids mesh
int pconn_hdl = COM_get_attribute_handle(“fluids.pconn”);

// Use Rocmap::compute_pconn to create the shared-node section
// of the pconn for the fluids mesh.
COM_call_function(MAP_compute_pconn, &mesh_hdl, &pconn_hdl);

5.0 Utilities and Test Programs

A default build of Rocmap creates “addpconn”, a utility for building the shared-node section of
pconn for a given .hdf file. Source code for this utility is found in Rocmap/util/addpconn.C .
Four other test programs are available in Rocmap/test/ . The source files for these programs also
have the same name as the programs, but with “.C” appended. Section 3.2 explains how to build
them.

5.1 addpconn

This utility reads in one or more .hdf files using Rocin. It makes a copy of the mesh from which
it removes all mesh attributes other than nodal coordinates and connectivity tables. Rocmap is
then used to rebuild the pconn on the new mesh, which is written to file.

addpconn <input filename patters or Rocin control file>
 <output file prefix>

 Rocmap User's and Developer's Guide Page 12�

Printed on Date:

1/19/07

To run in parallel, a Rocin control file must be passed as a second argument. If the second
argument ends in “.hdf”, then all panes are written out to a single pane. Otherwise, each pane is
written to a separate .hdf file.

5.2 bordertest_hex

This test program runs without any command line input. It builds an unstructured hex mesh with
4 elements and 18 nodes. Rocmap is used to determine which nodes are on the border, and store
this information in an attribute. The mesh is then written out to “hexmesh0000.hdf”.

5.3 bordertest_struc

This program is similar to bordertest_hex, except that a much larger mesh is created, and it is a
structured hex mesh. The output file is “strucmesh0000.hdf”.

