
Users Guide of Rocin and Rocout

X. Jiao and J. Norris

12/14/06

Part I

Rocin

1 Functionality

Rocin creates a series of Roccom windows by reading in a list of �les, where the �les can be in HDF or CGNS
format. The �les are self-contained in that they contain not only �eld data but also metadata (such as sizes,
data types, locations, and units), which are needed to create Roccom windows. Rocin maps the �blocks�
in the HDF �les or �zones� in CGNS �les into panes in Roccom windows. Rocin can be called collectively
on multiple processes, or by a single process in a sequential program, in which MPI does not need to be
initialized.

2 API

Rocin provides a simple API while maintaining the necessary �exibility and e�ciency. It provides two sets
of functions: the �rst set reads in metadata from the �les (and can optionally read in array data as well),
and the second set passes the array data from the �les (or from Roccom's memory space if data are already
loaded) to users memory space. The API are typically called through COM_call_function (see Roccom
Users Guide) and hence all arguments are passed by pointers (references).

2.1 Read Window

To read metadata from �les, a user can use one of the following two functions to read a single window or a
series of windows, respectively.

• void read_window(const char *�lename_patterns,
const char *window_name,
const MPI_Comm *comm=NULL,
const RulesPtr *is_local=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

• void read_windows(const char *�lename_patterns,
const char *window_pre�x,
const char *material_names=NULL,
const MPI_Comm *comm=NULL,
const RulesPtr *is_local=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

1

The argument �lename_patterns speci�es a list of zero, one or more patterns (regular expressions) of the
�les to be read. Multiple patterns should be separated with empty spaces. If there is no �le matching
the patterns in �lename_patterns on all processes (where �lename_patterns can be empty or not), then a
warning message will be printed, and an empty window (or windows) will be created. If there are matching
�les on any process, then a window (or windows) will be created by mapping from the matching �les. It
is guaranteed that each window de�nes all the attributes existing in any of the blocks (or zones) of its
corresponding material in the �les read by the processes within the given MPI communicator. If a pane has
no data for a particular attribute in its corresponding block (or zone), then the array associated with the
attribute will not be allocated in the pane.

The argument window_pre�x speci�es the window name (in the case of read_window()) or a pre�x
of the name(s) of the window(s) (for read_windows()) to be created. For read_windows, the argument
material_names speci�es a list of (space-separated) materials to be read from the �les, and these strings are
appended to window_pre�x to obtain the complete window names. If the material_name is NULL or the
empty string, then it is assumed that the �les contain only one type of material, and the window name will
be window_pre�x. Note that the windows created by these functions must be deleted by the user by calling
COM_delete_window after usage.

Among the remaining more advanced arguments, comm speci�es an MPI communicator. If comm is not
present or is NULL, then the default communicator is MPI_COMM_SELF. The arguments is_local is a
function pointer of type

void (*)(const int &pid, const int &comm_rank, const int &comm_size, int *local),

which determines whether a pane of given block ID (HDF) or zone ID (CGNS) will be read by the current
process. The �rst three arguments are input-only and the �nal argument is output-only. The last two
arguments are for setting and obtaining the time level of the dataset. If time_level is a nonempty string,
it will be used as an input, and the functions read only those datasets that have the matching time stamp;
otherwise, all datasets are assumed to have the same time stamp, and that of the �rst dataset read from the
�les will be returned by copying up to *str_maxlen characters (including a null terminator) into time_level,
if both time_level and str_maxlen are present and not NULL pointers.

2.2 Read by Control File

To allow more �exible user control, Rocin can also obtain HDF/CGNS �le names and pane IDs from a
user-provided control �le.

• void read_by_control_�le(const char *control_�le_name,
const char *window_name,
const MPI_Comm *comm=NULL,
char *time_level=NULL,
const char *str_maxlen=NULL);

The control �le contains a number of control blocks, each of which has up to four �elds (a process rank, a
list of �le names, a list of pane IDs, and optionally, a material name), as described shortly, and each �led
in general should be on one line. If present, the material name must be the same in all control blocks. At
runtime, a process obtains the �le names and pane IDs from the �rst control block that has a matching
process rank. If comm is NULL, the default communicator is MPI_COMM_SELF, and the rank for all
processes will be 0; if comm is present and is not MPI_COMM_NULL, then the process rank in the given
MPI communicator will be used; if comm is MPI_COMM_NULL, then the rank of the current MPI process
is replaced by a wild card, and the panes in all the �les listed in all the control blocks will be read. In other
words, when comm is MPI_COMM_NULL, all the panes in all the �les listed in the control �le will be
considered local. This wild-card feature is useful for a serial application to read in all the panes, which would
have been distributed by the control �le onto di�erent processes in a parallel run.

2

2.2.1 @Proc:

Marks the beginning of a process block, followed by a process's rank. A process reads in all the blocks that
match the current process rank. A wild card '*' (without quotes) can be used after @Procs: to match any
process. If the rank of the current process is a wild card (i.e., *comm==MPI_COMM_NULL), then all
blocks will match the current process.

2.2.2 @Files:

A list of zero, one, or more �le name patterns separated by empty spaces. A �le name can contain the
following place holders:

1. %dp for process rank, where d is an integer indicating the number of digits in the rank. If the
number d is absent, then the default value is 4. If the current process's rank is a wild card (i.e.,
*comm==MPI_COMM_NULL), then any d digits in a �le name will match.

2. %d i for pane ID, where d is an integer indicating the number of digits in the pane ID. It maps a �le
with a pane ID n onto a process, if n will be mapped onto the current process by the pane mapping.
The default value of d is 4.

3. %db for block ID, where d is an integer indicating the number of digits in the block ID. This option
can only be used in conjunction with the @Block or @BlockCyclic mapping in the next subsection,
which maps a �le with a block ID n onto a process, if n*base will be mapped onto the current process
by the mapping. The default value of d is 4.

4. %t for time stamp, which will be replaced by the time_level input argument.

For example, a �le name ��uid*_%t_%4p.*� with a time level �00.000000� will be replaced by ��uid*_00.000000_0000.*�
on process 0 and by ��uid*_00.000000_0001.*� on process 1. In general, a �le name may use at most one
of %dp, %d i or %db. If the listed �le names contain no directory path, then the �les are assumed to be in
the same directory that contains the control �le. If a �le name contains a relative path, then the path is
considered to be relative to the current working directory at runtime.

2.2.3 @Panes:

Speci�es a list of zero, one, or more pane IDs to be read by the process. For convenience, the user can also
specify one of the following mapping rules:

• @All (or equivalently a wild card '*' without quotes)

All panes are mapped onto the process.

• @Cyclic [<o�set>]

A pane is mapped onto a process if

mod(paneID− o�set,nprocs)=rank.

• @BlockCyclic <base> [<o�set>]

A pane is mapped onto a process if

mod((paneID-o�set)/base,nprocs)=rank.

The default value of o�set is 0. For example, for four processes, �@BlockCyclic 100 100� for 14 panes results
in the following mapping:

3

Process 0: 100 500 900 1300
Process 1: 200 600 1000 1400
Process 2: 300 700 1100
Process 3: 400 800 1200

• @Block <nblocks> <base> [<o�set>]

A pane is mapped onto a process if{
(paneID− o�set)/ (quot ∗ base + base)=rank, if rank < rem,
(paneID− o�set− rem)/ (quot ∗ base)=rank, otherwise,

where nblocks=quot*nprocs+rem. The default value of o�set is 0. For example, for four processes, �@Block
14 100 100� results in the following mapping:

Process 0: 100 200 300 400
Process 1: 500 600 700 800
Process 2: 900 1000 1100
Process 3: 1200 1300 1400

Note that the @Panes �eld may be left out if the @Files �eld is empty. When *comm==MPI_COMM_NULL,
then the @Panes �eld is immaterial.

2.2.4 @Material:

[To be implemented.] The keyword is followed by a character string to indicate the name of the material to
be read. This �eld is optional and typically need not to be present when there is only one type of material
in the �les (i.e., when all the data in the �les belong to the same window).

2.2.5 Sample Control Files

The following is a generic control �le specifying each process to read in a rank-dependent �le for a given
time stamp, with block cyclic mapping for panes.

@Proc: *

@Files: fluid*_%t_%4p.hdf

@Panes: @BlockCyclic 100 1

The following is a speci�c control �le for two processes.

@Proc: 0

@Files: fluid*_00.00_0000.hdf

@Panes: 1 3 5 7 9

@Material: fluid

@Proc: 1

@Files: fluid*_00.00_0001.hdf

@Panes: 2 4 6 8 10

@Material: fluid

2.3 Read Parameter File

To read parameters from a �le into a window, the following function should be used:

• void read_parameter_�le(const char *�le_name,
const char *window_name,
const MPI_Comm *comm=NULL);

4

The function reads parameters from the given �le and stores them as window attributes in the given parameter
window. If the window already exists, then only the attributes that already exist in the window are read
from the �le. Otherwise a new window is created and all of the parameters are read in. Process 0 of the
communicator should read the parameters, and then broadcast to all the processes. If comm is not speci�ed,
then the communicator of the window is used. If an option is listed more than once in the parameter �le,
the the last value for that option will overwrite the others.

2.4 Obtain Attribute

To obtain array data from �les, the following function should be used:

• void obtain_attribute(const Attribute *attribute_in,
Attribute *attribute_user,
int *pane_id=NULL);

This function �lls the second (destination) attribute from the �les using the data corresponding to the
�rst (source) attribute. The destination and source attributes can be the same. The attributes could be a
user-de�ned attribute, or an aggregate attribute, such as �window.conn�, �window.mesh�, �window.pmesh�,
�window.atts�, and �window.all�, which indicate obtaining connectivity tables only, mesh only (nodal coordi-
nates and connectivity tables), mesh with pane connectivity, attributes (everything except for pmesh), and
everything (including pmesh and attributes), respectively. If the third argument is present and is nonzero,
then only the pane with the given ID will be copied.

2.5 Initialization and �nalization

Rocin provides the following routines for initialization and �nalization.

• extern �C� void Rocin_load_module(const char *module_name);

Usually this procedure is invoked by COM_load_module(�Rocin�, module_name). It creates a window
with name <module_name> in Roccom and register its functions into the window.

• extern �C� void Rocin_unload_module(const char *module_name);

This procedure is typically invoked by COM_unload_module(�Rocin�, module_name). It unloads the
module from Roccom by deleting the window created by Rocin_load_module.

3 Implementation notes

In read_window, in general, only metadata are read into memory to create windows. The data bu�ers of
the windows may or may not be allocated yet. In obtain_attribute, Rocin obtains data from the �les to
�ll in user bu�ers. However, for certain �le formats, an implementation of Rocin may read in physical data
during read_window as well. The downside of the latter approach is higher memory requirements.

The function obtain_attribute can permute memory layout of an attribute. In general, an attribute in
Rocin can have either staggered or contiguous layout with a stride 1, but the user attribute can have either
staggered or contiguous layout and can also have a stride other than 1. The function obtain_attribute
support all these layouts.

The functions in the API can be implemented as C++ static member functions of Rocin, or regular
member functions. In the former case, the functions are registered with Roccom using COM_set_function;
in the latter case, they are registered using COM_set_member_function. Rocin works even if MPI_Init
was not called. Rocin must be Charm-safe in the sense that there is no global (or static) variable [Current
implementation is not yet Charm-safe].

5

Part II

Rocout

4 Functionality

Rocout writes a given attribute in a Roccom window into a �le in one of the supported formats (HDF and
CGNS), which can be read by application codes through Rocin, and by Rocketeer (and CGNS-compliant
tools, such as Tecplot, for CGNS format) for visualization. Rocout can support background output by
creating an I/O thread to allow overlap computation with I/O. The interface of Rocout is consistent with
Rocpanda, the parallel I/O utility.

5 API

Similar to Rocin, Rocout API typically should be called through COM_call_function.

5.1 Output

• void write_attribute(const char *�lename_pre,
const COM::Attribute *attr,
const char *material,
const char *timelevel,
const char *m�le pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

This function writes an attribute of local panes or of the pane with the given Pane ID (*pane_id, if present)
into a �le, where the �le name is <fname_pre><process_rank>.<su�x>, where <process_rank> is the
rank of the given MPI process, whose number of digits can be controlled by set_option() (see below). This
function will either overwrite the �le if the output mode (set by set_option()) is �w� or append to the �le if
the mode is �a�.

If m�le_pre is not null and nonempty, then the output �le will make a reference to the �le <mesh_pre><process_rank>.<su�x>
for the pmesh data with the same material name, and write only non-pmesh data into the current �le. When
appending data attributes into a �le that already contains the pmesh, then m�le_pre should be the same as
�lename_pre.

When calling write_attribute multiple times to write several datasets into the same set of HDF �les, it is
important that the write operations for di�erent panes must not interleave (i.e., the data for the same pane
must be written out consecutively). In general, di�erent windows can be written into the same set of �les,
but these windows must have di�erent material names.

Parameters:

1. fname_pre: the pre�x of the �le name, which can contain the directory part of the �le.

2. attr: a reference to the attribute to be written. The given attribute can be either a user de�ned
attribute, or one of the following aggregate attributes: �window.mesh� (coordinates and connectivity),
�window.pmesh� (mesh with pane connectivity), �window.atts� (all the data in the pane except for
pmesh), or �window.all� (all the data).

3. material: the material name to distinguish di�erent windows. It is recommended that di�erent win-
dows use di�erent material names, and is required if more than one window is written into the same
HDF/CGNS �le.

4. timelevel: a time stamp of the dataset.

6

5. m�le_pre: the pre�x of the name of the �le that contains the pmesh data of the given attribute. If not
present or is empty, then the pmesh will be written along with the given data attributes. If m�le_pre
does not start with �/� (i.e., does not have an absolute path), then the path of the mesh �le must
be either relative to the directory for fname_pre (with higher precedence) or relative to the current
working directory (with lower precedence).

6. comm: the MPI communicator in which the process rank should be obtained. If comm is NULL, then
the default value is the communicator of the owner window of the attribute (note that the default value
is di�erent from that with Rocin::read_window).

7. pane_id speci�es the pane (or panes) to be written. If pane_id=NULL or *pane_id=0, then all
panes will be written. If *pane_id>0, then only that speci�c pane will be written. It is an error if
*pane_id<0.

Instead of using set_option to control the output mode, a user can also use one of the following two functions,
which correspond to overwrite and append, respectively. [To be implemented.]

• void put_attribute(const char *�lename_pre,
const COM::Attribute *attr,
const char *material,
const char *timelevel,
const char *m�le pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

• void add_attribute(const char *�lename_pre,
const COM::Attribute *attr,
const char *material,
const char *timelevel,
const char *m�le pre = NULL,
const MPI_Comm *comm=NULL,
const int *pand_id=NULL);

These functions take the same arguments as write_attribute.

5.2 Metadata Output

• void write_rocin_control_�le(const char *window_name,
const char *�le_pre�xes,
const char *control_�le_name);

This function generates a control �le for Rocin for the given window and data�le pre�xes. This control �le
can be used with Rocin's read_by_control_�le member function.

• void write_parameter_�le(const char *�le_name,
const char *window_name,
const MPI_Comm *comm=NULL);

This function writes out the parameters de�ned in the given window to a parameter �le. Only process 0 of
the MPI communicator writes the �le. If comm is NULL, then the communicator of the window associated
with window_name is used.

5.3 Synchronization

• void sync();

Wait for the completion of an asynchronous write operation. It is needed only if the �async� mode is set to
�on� by set_option, described as follows.

7

5.4 Control

• void set_option(const char *option_name,
const char *option_val);

Set an option for Rocout, such as controlling the output format. The currently supported option_name and
their potential values are:

�format�: with values �HDF� and �CGNS� (default is �HDF�).
�async�: with values �on� and �o�� for enabling/disabling background out, respectively (default

is o�).
�mode�: with values �w� and �a� (corresponding to overwrite the �le and append to the �le),

which control the output mode of write_attribute (default is �w� ').
�localdir�: a directory path to prepend to the �lename pre�xes given to write_attribute, put_attribute

and add_attribute (default is ��).
�rankwidth�: the width of the process-rank to be appended to the �lename_pre and mesh_pre

(default is �4�). If zero, then do not append process rank.
�pnidwidth�: the width of the pane ID to be appended to the �lename_pre and mesh_pre after

appending process rank. Default value is 0, for which the pane ID is not appended.
�separator�: the character to use to separate the rank and pane ids in generated �lenames (default

is �_�). A separator is only used if both �rankwidth� and �pnidwidth� are non-zero.
�errorhandle�: with values �abort�, �ignore�, or �warn�.
�ghosthandle�: with values �write� and �ignore�.

Option names and values are case-sensitive.

• void read_control_�le(const char *�lename);

This function allows the user to set Rocout options by means of a control �le. The given �le should be a list
of option name/values pairs, separated by an equals sign. For example:

format = CGNS
localdir = /turing/projects/csar/MyDataDir
errorhandle = abort

Any option name supported by set_option may be used.

5.5 Initialization and �nalization

As Rocin, Rocout provides the following routines for initialization and �nalization.

• extern �C� void Rocout_load_module(const char *module_name);

Usually this procedure is invoked by COM_load_module(�Rocout�, module_name). It creates a window
with name <module_name> in Roccom and register its functions into the window.

• extern �C� void Rocout_unload_module(const char *module_name);

This procedure is typically invoked by COM_unload_module(�Rocout�, module_name). It unloads the
module from Roccom by deleting the window created by Rocout_load_module.

6 Implementation notes

The functions in the API can be implemented as C++ static member functions or regular member functions
of Rocout. In the former case, the functions are registered with Roccom using COM_set_function; in the
latter case, they are registered using COM_set_member_function. Rocout works even if MPI_Init was not
called, in which case the rank is assumed to be 0. Rocout must be Charm-safe in the sense that there is no
global (or static) variable.

8

A Sample Code

Samples codes of Rocin and Rocout can be found under Roccom/Rocin/test and Roccom/Rocout/test,
respectively.

B Contributors

John Norris is the main developer of Rocin and Rocout. Phil Alexander helped with debugging Roccom
calls in Rocin and Rocout. Jim Jiao is responsible for the speci�cation, with participation of Mike Campbell
in the early stage and many helpful discussions with Andreas Haselbacher and Orion Lawlor. Jim has also
been indispensible in debugging Rocin and Rocout. Orion wrote a sample code printin.C for Rocin.

9

