
Roccom Users Guide
Version 3.0

Xiangmin Jiao, Gengbin Zheng

Revised: 7/20/2008

1 Introduction

Large-scale numerical simulation of a complex system, such as a solid rocket motor, requires consideration
of multiple physical components, such as fluid dynamics, solid mechanics, and combustion. Because of
this multidisciplinary nature, development of such a simulation code typically involves collaboration among
many research subgroups using a partitioned approach, in which the individual physics codes are developed
more or less independently of the integration effort. The objective of Roccom is to ease the integration of
such independently developed modules into a coherent, coupled system, particularly in a distributed parallel
setting. It is designed to maximize concurrency in development of different modules, minimize user effort in
software integration, and provide interoperability between different programming languages (in particular,
C, C++, and Fortran 90).

The motivating multiphysics application for the integration framework described in this paper is an on-
going project at the Center for Simulation of Advanced Rockets (CSAR) at the University of Illinois
(http://www.csar.uiuc.edu). The ultimate objective of CSAR is to develop an integrated software system for
detailed whole-system simulation of solid rocket motors under normal and abnormal operating conditions.
Figure 1 shows the overall structure of the current generation of our simulation code. Roccom categorizes

Figure 1: Software components of Rocstar.

these modules into two types: application modules (including computation (physics) modules and orchestra-
tion modules) and framework modules (including Roccom’s runtime system and the service modules). In the

1

figure, the boxes on the left show the physics modules. On the top is the orchestration module, Rocman (and
its modern version Rocman3) , which manages the coupling algorithms. On the right are the computer sci-
ence modules that provide services to the physics and orchestration modules through Roccom. The physics
modules are written in Fortran 90, and the service modules are written in C++. The parallel implementation
uses the standard Message Passing Interface (MPI) for all modules except Rocflu-MP, which uses the finite
volume framework of Charm++.

Although it was motivated specifically by the needs of the rocket simulation application just described,
the integration framework we have developed is quite general, and should be equally applicable to many
other multiphysics simulations involving multiple, interacting software modules representing various phys-
ical components, especially those based on spatial decomposition into geometric domains with associated
meshes. Roccom provides systematic methods for modules in a complex simulation to keep track of their
data and to access data defined by other modules. Besides declaring variables and allocating buffers, each
computation module registers its datasets with Roccom. These datasets can later be retrieved from Roccom
by the same module or other modules, using parameters such as data block number, attribute name, etc.
Functions can be registered and invoked in a similar way through Roccom. This scheme allows great inde-
pendence in design and development of individual modules, hides the coding details of different research
subgroups, and enables plug-and-play of different modules in Rocstar.

Roccom is composed of three parts: a simple API (Application Programming Interface) for application
modules, a C++ interface for developing service modules, and a runtime system. The API provides sub-
routines for registering the public data and functions of a module, querying a publicized data of a module,
and invoking registered functions. In general, the API is the only part that application code developers need
to learn in order to use Roccom. After an application code registers its data with Roccom, it can easily
take advantage of the service utilities built on top of Roccom’s developers interface (such as parallel I/O).
Roccom also provides support for eliminating global variables from application codes, which can then take
advantage of the multi-thread and dynamic load balancing features provided by Charm++. In this documen-
tation, we address only the general concepts of Roccom and its API. For a more in-depth discussion on the
developers interface or runtime system, please see the Roccom Developers Guide.

1.1 Historical Notes and Acknowledgments

The design of Roccom was first proposed by Xiangmin Jiao and Michael Campbell in December 2000,
with the participation of Jie Zheng (Prof. Eric de Sturler’s former student) and Milind Bhandarkar. The
proposed interface and underlying concepts were described in Version 1.0 of the document, which was
initially called the “Window Manager Users guide” and was written before Roccom was implemented.
Nevertheless, Version 1.0 served as a design specification of a bulk of Roccom.

The name Roccom was proposed by Prof. Michael T. Heath, and so was the term “window”. The term
“pane” was due to Heath and Bill Dick. These terms were inspired by the observation that the interface
data are frequently lower-dimensional objects of a domain and are the “window” through which a module
is communicating with the outside world.

Roccom Version 1.0 was implemented by Jiao in 2001. Version 2.0 has been rewritten substantially since
Version 1.0, with some new features introduced by Jiao as described in the previous subsection. These
changes affected almost all interface subroutines. Version 2.x was implemented in Fall 2002 by Jiao. Version
3.0 was motivated by the needs of dynamic arrays, for Rocin, and for mesh adaptivity. Thanks to Andreas
Haselbacher’s input on improving the presentation of this document.

2

1.1.1 New Changes in Version 3.x

The following features have been recently added into Roccom.

1. Added support for dynamic arrays by differencing size and capacity of an array.

2. Simplified and unified interface for initialization of mesh and other attributes using set_size and
set_array.

3. Specification of data layout during set_array.

4. Ability to redefine attributes (such as “nc”) and to define new connectivity types (to be implemented).

5. Differentiates allocate_array and resize_array (conditional reallocation).

6. More comprehensive support for inquiring information with COM_get_panes, COM_get_attributes,
and COM_get_connectivities. .

7. Better support for mixed meshes.

8. New keywords “pconn”, “pmesh”, and “atts” and new name format for element connectivity.

9. Added support for setting, obtaining, and checking bounds of data attributes.

10. Added support for registration of C++ member function function.

11. Added set_array_const and get_array_const for protecting data integrity through immutable data.

12. Added C++ version of Roccom APIs which support std::string as parameters.

1.1.2 Changes in Version 2.x

The following features were added into Roccom.

1. Inheritance of windows.

2. Profiling tools.

3. Concept of member function.

4. Attribute and function handles.

5. Support for Fortran 90 pointers.

6. Loading and unloading of dynamic libraries.

7. Memory management. (Version 2.1 allows allocation and deallocation of attributes for individual
panes).

8. More element types (pyramids and wedges/prisms added in Version 2.1).

3

2 Overview

Roccom (standing for Rocstar Component Object Manager) is a component-based, object-oriented, data-
centric software integration framework, which provides a systematic, object-oriented, data-centric approach
for inter-module interaction. Under this framework, a computation module constructs distributed objects
called windows and registers its datasets into windows. With the authorization of their owner modules or
the orchestration module, these datasets can later be retrieved from Roccom by other modules using handles
provided by Roccom. Functions can be registered and invoked similarly through Roccom. This scheme
allows great independence in design and development of individual modules, hides the coding details of
different research subgroups, and provides additional features such as automatic tracing and profiling.

2.1 Object-Oriented Interfaces

To simplify inter-module interfaces, Roccom utilizes an object-oriented methodology for abstracting and
managing the data and functions of a module. This abstraction is mesh- and physics-aware and supports
encapsulation, polymorphism, and inheritance.

2.1.1 Windows and Panes

Roccom organizes data and functions into distributed objects called windows. A window encapsulates a
number of data attributes (such as the mesh and some associated field variables) and public functions of
a module, any of which can be empty. A window can be partitioned into multiple panes, for exploiting
parallelism or for distinguishing different material or boundary-condition types. In a parallel setting, a
pane belongs to a single process, while a process may own any number of panes. All panes of a window
must have the same types of data members, although the sizes of data members may vary. A module
constructs windows at runtime by creating attributes and registering the addresses of the attributes and
functions. Typically, the attributes registered with Roccom are persistent (instead of temporary) datasets, in
the sense that they live throughout the simulation (except that windows may need to be reinitialized at some
events, such as remeshing). Different modules can communicate with each other only through windows, as
illustrated in Figure 2.

Figure 2: Schematic illustration of windows and panes.

A code module references windows, attributes, or functions using their names, which are of character-string
type. Window names must be unique across all modules, and an attribute or function name must be unique
within a window. A code module can obtain an integer handle of (i.e., a reference to) an attribute/function
from Roccom with the combination of the window and attribute/function names. The handle of an attribute

4

can be either mutable or immutable, where an immutable handle allows only read operations to its referenced
attribute, similar to a const reference in C++. Each pane has a user-defined positive integer ID, which must
be unique within the window across all processors but need not be consecutive.

2.1.2 Data Attributes

Data attributes of a window include mesh data, field variables, and window or pane attributes. The former
two types of attributes are associated with nodes or elements. A nodal or elemental attribute of a pane is
conceptually a two-dimensional dataset: one dimension corresponds to the nodes/elements, and the other
dimension corresponds to the data within a node/element. The dataset can be stored in a row- or column-
major two-dimensional array, or be stored in separate arrays for each component of the dataset. Roccom
allows users to specify a stride (the distance in the base data type, such as int or double precision) between
the same component of two consecutive items (such as nodes/elements).

Mesh Data Mesh data include nodal coordinates, pane connectivity, and element connectivity (or simply
connectivity), whose attribute names and data types are predefined by Roccom. The nodal coordinates are
double-precision floating-point numbers, with three components per node. The pane connectivity specifies
the communication patterns between nodes shared by two or more panes, and is a pane attribute packed in
a 1-D array. The registration of pane connectivity is desirable for many purposes, but it is optional and can
be computed automatically from coordinates using Rocmap.

Roccom supports both surface and volume meshes, which can be either multi-block structured or unstruc-
tured with mixed elements. For multi-block meshes, each block corresponds to a pane in a window. For
unstructured meshes, each pane has one or more connectivity tables, where each connectivity table contains
consecutively numbered elements (i.e., their corresponding field variables are stored consecutively) of the
same type. Each connectivity table must be stored in an array with contiguous or staggered layout. To
facilitate parallel simulations, Roccom also allows a user to specify the number of layers of ghost nodes and
cells for structured meshes, and the numbers of ghost nodes and cells for unstructured meshes.

Field Variables Field variables are nodal or elemental attributes that have no designated names or data
types. A user must first define such an attribute in the window and then register the addresses of the attribute
for each pane. For a specific pane, if a field variable is stored in one single array, then the array is registered
with a single call; if it is stored in multiple arrays, then the user must register these arrays separately.

Window and Pane Attributes A data member can also be associated with either the window or a pane.
Examples of window attributes include a data structure that encapsulates the internal states of a module or
some control parameters. An example of a pane attribute is an integer flag for the boundary condition type
of a surface patch. Similar to field variables, these attributes do not have designated names or data types,
and must be created within a window and then registered.

Aggregate Attributes In Roccom, although attributes are registered as individual arrays, attributes can be
referenced as an aggregate. For example, the name “mesh” refers to the collection of nodal coordinates and
element connectivity; the name “all” refers to all the data attributes in a window. For staggered attributes,
one can use “i-attribute” (i≥ 1) to refer to the ith component of the attribute or use “attribute” to refer to all
components collectively. See Section 3.2.2 for details.

5

Aggregate attributes enable high-level inter-module interfaces. For example, one can pass the “all” attribute
of a window to a parallel I/O routine to write all of the contents of a window into an output file with a single
call. As another example, it is sometimes more convenient for users to have Roccom allocate memory for
data attributes and have application codes retrieve memory addresses from Roccom. Roccom provides a call
for memory allocation, which takes a window attribute name pair as input. A user can pass in “all” for the
attribute name, which will have Roccom allocate memory for all the unregistered attributes.

2.1.3 Functions

A window can contain not only data members but also function members. A module can register a function
into a window, to allow other modules to invoke the function through Roccom. Registration of functions
enables a limited degree of runtime polymorphism. It also overcomes the technical difficulty of linking
object files compiled from different languages, where the mangled function names can be platform and
compiler dependent.

Member Functions Except for very simple functions, a typical function needs to operate with certain
internal states. In object-oriented programs, such states are encapsulated in an “object”, which is passed to a
function as an argument instead of being scattered into global variables as in traditional programs. In some
modern programming language, this object is passed implicitly by the compiler to allow cleaner interfaces.

In mixed-language programs, even if a function and its context object are written in the same programming
language, it is difficult to invoke such functions across languages, because C++ objects and F90 structures
are incompatible. To address this problem, we introduce the concept of member functions of attributes
into Roccom. Specifically, during registration a function can be specified as the member function of a
particular data attribute in a window. Roccom keeps track of the data attribute and passes it implicitly to the
function during invocation, in a way similar to C++ member functions. Because the caller no longer needs
to know the context object of the callee, this concept overcomes the incompatibility without sacrificing
object-orientedness.

Optional Arguments Roccom supports the semantics of optional arguments similar to that of C++ to
allow cleaner codes. Specifically, during function registration a user can specify the last few arguments as
optional. Roccom passes null pointers for those optional arguments whose corresponding actual parameters
are missing during invocation.

2.1.4 Inheritance

In multiphysics simulations, inheritance of interface data is useful in many situations. First, the orchestration
module sometimes needs to create data buffers associated with a computation module for the manipulation
of jump conditions. Inheritance of windows allows the orchestration module to obtain a new window for
extension or alteration, without altering the existing window. Second, a module may need to operate on a
subset of the mesh of another module. In rocket simulation, for example, the combustion module needs to
operate on the burning surface between the fluid and solid. Furthermore, the orchestration module some-
times needs to split a user-defined window into separate windows based on boundary-condition types, so
that these subwindows can be treated differently (e.g., written into separate files for visualization). Figure 3
depicts a scenario of inheritance among three windows.

6

Figure 3: Scenario of inheritance of mesh and field attributes among three windows.

To support these needs, Roccom allows inheriting the mesh from a parent window to a child window in
either of two modes. First, the mesh can be inherited as a whole. Second, only a subset of panes that satisfy
a certain criterion are inherited. After inheriting mesh data, a child window can inherit data members from
its parent window, or other windows that have the same mesh (this allows for multiple inheritance). The
child window obtains the data only in the panes it owns and ignores other panes. During inheritance, if an
attribute already exists in a child window, Roccom overwrites the existing attribute with the new attribute.

Roccom supports two types of inheritance for data members: cloning (with duplication) and using (without
duplication). The former allocates new memory space and makes a copy of the data attribute in the new
window, and is safer in terms of data integrity. The latter makes a copy of the references of the data member,
which avoids the copying overhead associated with cloning and guarantees data coherence between the
parent and child, and is particularly useful for implementing orchestration modules.

2.1.5 Data Integrity

In complex systems, data integrity has profound significance for software quality. Two potential issues can
endanger data integrity: dangling references and side effects. Roccom addresses these issues through the
mechanisms of persistency and immutable references, respectively.

Persistency Roccom maintains references to the datasets registered with its windows. To avoid dangling
references associated with data registration, Roccom imposes the following persistency requirement: the
datasets registered with a window must outlive the life of the window. Under this model, any persistent
object can refer to other persistent objects without the risk of dangling references. In a heterogeneous

7

programming environment without garbage collection, persistency cannot be enforced easily by the runtime
systems instead, it is considered as a design pattern that application code developers must follow.

Immutable References Another potential issue for data integrity is side effects due to inadvertent changes
to datasets. For the internal states of the modules, Roccom facilitates the traditional integrity model through
member functions described earlier. In Roccom, a service module can obtain accesses to another module’s
data attributes only through its function arguments, and Roccom enforces at runtime that an immutable
handle cannot be passed to mutable arguments.

2.2 Architecture of Roccom

The core of Roccom is composed of three parts: an Application Programming Interface (API), a C++ class
interface for development of service modules, and a runtime system for the bookkeeping associated with
data objects and invocation of functions.

2.2.1 Roccom API

The Roccom API supplies a set of primitive function interfaces to physics and orchestration modules for
system setup, window management, information retrieval, and function invocation. The subset of the API
for window management serves essentially the same purpose as the Interface Definition Language (IDL)
of other frameworks (such as CCA), except that Roccom parses the definitions of the windows at runtime.
Roccom provides different bindings for C++ and F90, with similar semantics. See Section 3 for details.

2.2.2 C++ Class Interfaces

Roccom provides a unified view of the organization of distributed data objects for service modules through
the abstractions of windows and panes. Internally, Roccom organizes windows, panes, attributes, functions,
and connectivities into C++ objects, whose associations are illustrated in Figure 4, on a UML class diagram.
A Window object maintains a list of its local panes, attributes, and functions; a Pane object contains a list
of attributes and connectivities; an Attribute object contains a reference to its owner window. By taking
references to attributes as arguments, a function can follow the links to access the data attributes in all
local panes. The C++ interfaces conform to the principle of deeply immutable references, ensuring that a
client can navigate through only immutable references if the root reference was immutable. Through this
abstraction, the developers can implement service utilities independently of application codes, and ensure
applicability in a heterogeneous environment with mixed meshes, transparently to physics modules.

2.2.3 Roccom Runtime System

The runtime serves as the middleware between modules. It keeps track of the user-registered data and func-
tions. During function invocation, it translates the function and attribute handles into their corresponding
references with an efficient table lookup, enforces access protection of the attributes, and checks whether the
number of arguments of the caller matches the declaration of the callee. Furthermore, the runtime system
also serves as the middleware for transparent language interoperability. For example, if the caller is in F90
whereas the callee is in C++, the runtime system will null-terminate the character strings in the arguments
before passing to the callee.

8

Figure 4: UML associations of Roccom’s classes.

Through the calling mechanism, Roccom also provides tracing and profiling capabilities for inter-module
calls to aid in debugging and performance tuning. It also exploits hardware counters through PAPI to ob-
tain performance data such as the number of floating-point instructions executed by modules. A user can
enable such features using command-line options without additional coding. To further ease debugging, we
have integrated the malloc() debugger Electric Fence (http://perens.com/FreeSoftware) into the framework.
Electric Fence stops a program on the first instruction that causes a bounds violation, and requires no recom-
pilation but only relinking of the executable. Together with the tracing capability, this tool makes it much
easier to identify which module is responsible for a memory violation.

2.3 Module Requirements

A Roccom application has a driver or orchestration module, in this case Rocman, which is responsible for
system setup and invoking the registered functions in turn. Each Roccom-compliant module must provide
a load-module routine, which creates a window to encapsulate its interface functions and context objects,
and an unload-module, which destroys the window, where the window name is typically the same as that
of the module. By calling the load-module routines, the driver dynamically loads a set of modules into the
runtime system. Through Roccom’s calling mechanism, Rocman then invokes the functions of the physics
and service modules, which in turn can also invoke functions provided by other modules.

Furthermore, a physics module must provide three basic interface functions: an initialization routine for al-
locating and initializing internal data structures and creating two windows (one for jump conditions and one
for internal data to be stored/restored for restart and predictor-corrector iterations); a main update routine
for updating the physical solution for one system time step by obtaining jump conditions from the orches-
tration module; a finalization routine for deallocating memory and destroying the windows. Figure 5 shows
a schematic UML sequence diagram of the interactions between the modules of Rocstar.

9

Figure 5: Interaction between modules shown on UML sequence diagram.

3 Roccom API

Roccom provides different bindings for C, C++, and Fortran 90, with similar semantics, except that C/C++
is case-sensitive whereas Fortran is case-insensitive, and C/C++ passes arguments by value whereas Fortran
passes by reference. Another subtle difference is that Fortran character strings, which are not null terminated
by default, must be interpreted differently from C/C++ character strings. These differences are apparent
in the prototype definitions of the subroutines, but are mostly transparent to users. Roccom’s interface
prototypes are defined in “roccom.h” (for C/C++) and ”roccomf90.h” (for Fortran 90), which must be
included by the codes in corresponding languages, respectively.

Roccom’s interface subroutines follow the following conventions: They all start with the prefix COM_,
followed by lower-case letters (for C/C++). Most subroutines return no values unless otherwise specified.
If a non-fatal error occurred inside a Roccom subroutine, an error flag will be set. For the C and Fortran
interfaces, the error code can be obtained by calling COM_get_error_code. For the C++ interface, the
error code will be thrown as an exception. This error-handling convention is different from Roccom 1.0,
where every subroutine returns either zero or a nonzero error code.

Although Roccom’s API has about 40 functions, a simple computation module needs to use only about 10 of

10

them, mostly in Section 3.2. The other functions are more advanced and meant for the orchestration module
and for more complex physics modules.

3.1 Initialization and Finalization

3.1.1 Startup and Shutdown of Roccom

Implementations of Roccom’s runtime system require some setup operations before any other Roccom op-
erations can be performed. To provide for this, Roccom includes an initialization subroutine COM_init.

C: COM_init(int *argc, char ***argv)

Fortran: SUBROUTINE COM_INIT

This subroutine must be called exactly once from every process before any other Roccom subroutine (apart
from COM_initialized) is called. It is typically called from the driver routine of the application. The C
version accepts the arguments argc and argv, which are the arguments of the main routine of C. COM_init
parses the following options:

• “-com-v n”: Set the verbose level of all processes to n (see COM_set_verbose);

• “-com-vp n”: Set the verbose level of process p to n (see COM_set_verbose);

• “-com-mpi”: Call MPI_Init within COM_init.

• “-com-home <directory>”:Search for shared libraries under <directory>/lib. Alternatively, one can
pass the directory by setting either ROCCOM_HOME or ROCSTAR_HOME enrionment variables.

The Fortran version COM_INIT takes no arguments. A corresponding subroutine COM_�nalize is also
provided for Roccom to clean up its state after the execution of the program. It also needs to be called on
every process. Once this subroutine is called, no Roccom subroutine may be called.

C: COM_�nalize(void)

Fortran: SUBROUTINE COM_FINALIZE

The following is a piece of code in C that illustrates its usage.

int main(int argc, char **argv) {

COM_init(&argc, &argv);

/* main program */

COM_finalize();

}

Roccom provides a subroutine COM_initialized for checking whether COM_init has been called.

11

C: int COM_initialized(void)

Fortran: FUNCTION COM_INITIALIZED()
INTEGER :: COM_INITIALIZED

The argument flag is set to nonzero if COM_init has been called and zero otherwise.

Furthermore, Roccom runtime environment can also be shut down abnormally by calling COM_abort.

C: void COM_abort(int ierr)

Fortran: SUBROUTINE COM_ABORT(IERR)
INTEGER, INTENT(IN) :: IERR

This function terminates a Roccom program and returns the error code ierr to the invoking environment.
If MPI was initialized, then COM_abort calls MPI_Abort internally on MPI_COMM_WORLD. Other-
wise, it calls the exit function of the standard C library. For Fortran codes, Roccom also provides a related
subroutine COM_CALL_EXIT, which we describe in Section 3.3.6.

3.1.2 Loading and Unloading of Modules

In the Roccom framework, each module can be built into a dynamic library named libRocfoo.so. Roccom
provides the following interface to load and unload the dynamic library for a module.

C: COM_load_module(const char *modName, const char *winName)

Fortran: SUBROUTINE COM_LOAD_MODULE(MODNAME, WINNAME)
CHARACTER(*), INTENT(IN) :: MODNAME, WINNAME

C: COM_unload_module(const char *modName, const char *winName=NULL)

Fortran: SUBROUTINE COM_UNLOAD_MODULE(MODNAME,WINNAME)
CHARACTER(*), INTENT(IN) :: MODNAME,WINNAME
OPTIONAL :: WINNAME

The argument modName is the main part of the library name (e.g., “Rocfoo” for libRocfoo.so). The mod-
ule Rocfoo needs to supply two subroutines, Rocfoo_load_module and Rocfoo_unload_module,
which takes winName as its argument. When COM_load_module/ COM_unload_module is called,
Roccom locates the symbolRocfoo_load_module/Rocfoo_unload_module in libRocfoo.so, respec-
tively, and invokes these user-provided routines by passing winName to load/unload the module. For
COM_unload_module, the winName argument can be omitted if the module is loaded only once.

For ease of debugging, sometimes it is desirable to build Roccom modules and applications statically. In this
case, an application need to define the prototypes ofRocfoo_load_module andRocfoo_unload_module
and call them directly instead of through COM_load_module/ COM_unload_module. Roccom pro-
vides the following macros to C/C++ codes (defined when roccom.h is included):

COM_EXTERN_MODULE(modName_noquotes)

COM_LOAD_MODULE_STATIC_DYNAMIC(modName_noquotes, winName)

COM_UNLOAD_MODULE_STATIC_DYNAMIC(modName_noquotes, winName)

12

Depending on whether the macro STATIC_LINK is defined (e.g., by passing -DSTATIC_LINK to the
compiler) or not, these macros expands to different statements. When STATIC_LINK is defined, then
COM_EXTERN_MODULE(Rocfoo) definesRocfoo_load_module andRocfoo_unload_module.
Otherwise, it expands to noop. For C++ codes, since COM_EXTERN_MODULE uses the extern
�C� modifier, it cannot be used inside a function. COM_LOAD_MODULE_STATIC_DYNAMIC(
Rocfoo, “FOO”) expands to Rocfoo_load_module(“FOO”) if the STATIC_LINK is defined, and to
COM_load_module(“Rocfoo”, “FOO”), otherwise; similarly forCOM_UNLOAD_MODULE_STATIC_DYNAMIC.

3.2 Data and Function Registration

Roccom organizes data and functions into windows. A window encapsulates a number of data members
(such as the mesh and some associated data attributes) and public functions of a module. A module can
create any number of windows. All panes of a window must have the same collection of data members,
although the size of each data member may vary.

3.2.1 Creation of Window

A call to COM_new_window creates an empty window with a given name.

C++: COM_new_window(const std::string wName, MPI_Comm comm=MPI_COMM_SELF)

C: COM_new_window(const char *wName, MPI_Comm comm=MPI_COMM_SELF)

Fortran: SUBROUTINE COM_NEW_WINDOW(WNAME, COMM)
CHARACTER(*), INTENT(IN) :: WNAME
OPTIONAL, INTEGER, INTENT(IN) :: COMM

The wName argument is a character string and must be unique across all modules, and comm is the MPI
communicator of the owner processes of the window. Because a window is a collective concept, this sub-
routine should be called on all processes within the MPI communicator. The communicator can be retrieved
by calling COM_get_communicator (see subsection 3.5).

After a window is created, a user can create data attribute members and register addresses of data and
functions to it as described later, followed by calling COM_window_init_done to mark the end of the
registration of a window.

C++: COM_window_init_done(const std::string name, int clct=1)

C: COM_window_init_done(const char *name, int clct=1)

Fortran: SUBROUTINE COM_WINDOW_INIT_DONE(NAME, CLCT)
CHARACTER(*), INTENT(IN) :: NAME
INTEGER, INTENT(IN), OPTIONAL :: CLCT

It also takes the window name as its first argument. The second argument clct specifies whether the function
is being called collectively on all the owner processes of the window, so that the mapping from panes
to processes can be determined. If any pane was created or deleted, then COM_window_init_done
must be called collectively before the window is used, by passing a non-zero value (the default) to clct.
After calling COM_window_init_done, the sizes and arrays of the attributes can be changed without

13

calling COM_window_init_done again. Attributes and/or panes can be added or deleted, given that
COM_window_init_done is called after the changes. If the attributes were changed but no panes were
added or deleted from any process, then COM_window_init_done can be called with clct equal to zero,
to avoid recomputing the pane-to-process mapping.

3.2.2 Data Attributes

Declaration of New Attributes Besides mesh data, a window can have other data members, which can
be associated with the window, a pane, nodes, or elements of the pane. Different from keywords, these
data attributes do not have designated names or data types. Therefore, a user must first define an attribute
by calling COM_new_attribute before registering the addresses of the attribute. Again, this subroutine
must be called collectively on all owner processes of a window.

C++: COM_new_attribute(const std::string aName, char loc, COM_Type type,
int ncomp, const char *unit)

C: COM_new_attribute(const char *aName, char loc, COM_Type type,
int ncomp, const char *unit)

Fortran: SUBROUTINE COM_NEW_ATTRIBUTE(ANAME, LOC, TYPE,
NCOMP, UNIT)
CHARACTER(*), INTENT(IN) :: ANAME, FNAME, UNIT
CHARACTER*1, INTENT(IN) :: LOC
INTEGER, INTENT(IN) :: TYPE, NCOMP

In the argument list, aName is the attribute name in the format of “window attribute”, similar to mesh data
names; loc can be either ’w’, ’p’, ’n’, or ’e’, corresponding to windowed, panel, nodal, or elemental data;
type specifies the base datatype of the attribute, which can be one of the constant defined in Appendix B;
ncomp is the number of components of the attribute (for example, the number of entries associated with each
node/element for nodal/elemental data); and unit is the unit of the data attribute, which can be the empty
string “” if the attribute is unitless.

One can call COM_new_attribute on an existing attribute to re-define an attribute (including the keyword
“nc”). However, one cannot increase the number of components of the predefined attributes (see next sub-
section). After calling COM_new_attribute, the previously registered data are reset, and its handles and
inherited attributes become invalid. It is the user’s responsibility to ensure the consistency for the attribute.

Predefined Mesh Data Mesh data, including nodal coordinates, pane connectivity, and element connec-
tivity (or simply connectivity), have predefined attribute names and data types. Nodal coordinates (“nc”)
are predefined as double-precision nodal attributes with three components (corresponding to x, y, and z,
respectively) per node and a default unit “m”. However, nodal coordinates may be redefined by calling
COM_new_attribute to have less than 3 components, a different base data type, or a different unit. Pane
connectivity (“pconn”) is predefined as a 1-D integer pane attribute with no unit.

“nc” for nodal coordinates
“pconn” for pane connectivity

For each pane, the pane-connectivity array can have multiple blocks:

14

1. shared nodes;

2. real nodes to send;

3. ghost nodes to receive;

4. real cells to send;

5. ghost cells to receive.

The first block goes into the real part of pconn and blocks 2–5 go into the ghost part. Blocks 2 and 3 must
be present together, so are blocks 4 and 5. The ghost part of pconn is optional, and within the ghost part of
pconn, blocks 4 and 5 are optional. Each block has the following content:

<number of communicating-pane blocks to follow>
<communicating pane id 1>
<#local nodes to follow>
<list of local nodes>...
... ! repeat for other remote panes

The lists of nodes for a pair of communicating panes are stored in the same order in their corresponding
tables. Furthermore, the panes are stored in increasing order of pane IDs. If a node is shared by more than
two panes, then every pair of shared nodes is stored in pconn. Note that it is possible for a single pane to
have duplicated nodes, for example, in the case of branch-cut for structured meshes. In this case, in the
block for shared nodes, the list of local nodes is composed of a series of node pairs, where the first node
in the pair always has a smaller node ID than the second, and the number of local nodes is equal to twice
the number of pairs. Note that in the case of partial inheritance, where a subwindow may inherit a subset of
panes from a parent window, pconn may be inherited by the subwindow for its inter-pane communication,
and as a consequence pconn may refer to some remote panes that no longer exist. In this case, it is important
to note that the first number in each block is no longer the actual number of communicating panes, and a
traversal of pconn should skip the nonexisting remote panes.

The names of element connectivities have the format of “:elementtype:aname”, where the “:aname” part is
optional and is useful when there are multiple connectivity tables for one type of elements. Note that element
connectivities are not regular attributes, in that different panes may contain different types of elements, and
an element connectivity must not be created by calling COM_new_attribute but by setting its size and
registering its address.

“:st1:aname”, “:st2:aname”, “:st3:aname” for structured mesh of 1, 2 and 3 dimensions.
“:b2:aname” and “:b3:aname” for 2- and 3-node bar elements.
“:t3:aname”, “:t6:aname”, “:q4:aname”, “:q8:aname”, and “:q9:aname” for connectivity ta-

bles of 3- and 6-node triangles, and 4-, 8-, and 9-node quadrilaterals, respectively.
“:T4:aname”, “:T10:aname”, “:B8:aname” (“:H8:aname”), and “:B20:aname” for connectiv-

ity tables of 4- and 10-node tetrahedra, and 8- and 20-node bricks, respectively
“:P5:aname”, “:P14:aname”, “:P6:aname” (“:W6:aname”), “:P15:aname” (“:W15:aname”),

and “:P18:aname” (“:W18:aname”) for connectivity tables of 5- and 14-node pyramids and
6-, 15-, and 18-node prisms (aka pentahedra or wedges), respectively.

15

For elements of unstructured meshes, Roccom uses the same numbering convention as the CFD General
Notation System (CGNS), of which a detailed description can be found in Section 3.3 of CGNS Standard
Interface Data Structures (http://www.grc.nasa.gov/WWW/cgns/sids/sids.pdf). If a pane has mul-
tiple connectivity tables, these tables must be registered in increasing order of the element numbering (i.e.,
the elements with smaller indices in field-variable arrays must be registered earlier), and ghost elements
must be registered last. Note that for structured meshes, a pane can register only one connectivity using
COM_set_array_const described in the next subsection, by passing in the numbers of nodes of all di-
rections in a single array listed in Fortran convention (See example code in subsection 3.2.4). We will allow
for users to add new element types in future releases.

Registration of Sizes One sets the sizes of an attribute using the following routine.

C++: COM_set_size(const std::string aName, int pane_id, int size, int ng=0)

C: COM_set_size(const char *aName, int pane_id, int size, int ng=0)

Fortran: SUBROUTINE COM_set_size(ANAME, PANE_ID, SIZE, NG)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID, SIZE, NG
OPTIONAL :: NG

In the arguments, aName is the data name in the format of “window.aname” or “window.:elementtype:aname”
for connectivity tables paneID is a user-defined positive integer identifier of the pane, which must be unique
within the window across all processors but need not be consecutive. Window attributes should be registered
with pane-ID 0. The argument size is either the total number of nodes (including ghost nodes) in the pane
(for nodal coordinates), or the number of elements (including ghost elements, for a connectivity table), or
the length of the dataset for panel or windowed attributes. ng (optional in F90 and C++; default is 0) is either
the number of ghost nodes in the pane for nodal data or the number of ghost elements for a connectivity
table.

The default size of a window attribute is 1, but is undefined for other types of attributes. Note that setting
the number of nodes for one nodal attribute affects all other nodal attributes, and it is more efficient to set
size for “nc”. Typically, one should set the number of elements for each element connectivity.

Registration of Preallocated Array After creating an attribute, a user can register the address or ad-
dresses of the attribute using the following subroutine.

C++: COM_set_array(const std::string aName, int paneID, void *addr,
int stride=0, int cap=0)

C: COM_set_array(const char *aName, int paneID, void *addr,
int stride=0, int cap=0)

Fortran: SUBROUTINE COM_SET_ARRAY(ANAME, PANEID, ADDR, STRIDE,
CAP)

CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE> :: ADDR
OPTIONAL :: STRIDE, CAP

16

As for COM_set_size, the aName is either an attribute name or the name to a connectivity table, and the
paneID is a positive integer ID for the owner pane or 0 for window attributes. The addr argument specifies
the address of the array for the attribute. If the components of each item are stored contiguously in an array
of Array(stride,cap) in Fortran convention with stride>=ncomp and cap>=size, one can register the array by
with a single call. If it is stored in an array of Array(cap, ncomp), then the stride should be set to 1. The
stride argument can be omitted if stride is equal to ncomp, and it is invalid if stride is greater than 1 but
smaller than ncomp. In Fortran 90, it is very important not to register a scalar variable defined locally
in a subroutine or function (i.e., a stack variable), unless it has the TARGET or POINTER property.

The cap argument can be omitted if cap==size. Otherwise, the user must register an array for each individual
component of the attribute using attribute name in the format “window.i-attribute”, where i is an integer
between 1 and the number of components of the attribute (Not applicable for connectivity tables). One can
change the sizes and the arrays by calling COM_set_size and COM_set_array.

To protect data integrity, Roccom allows registration of a read-only data by callingCOM_set_array_const,
which takes the same arguments as COM_set_array.

C++: COM_set_array_const(...)

C: COM_set_array_const(...)

Fortran: SUBROUTINE COM_SET_ARRAY_CONST(...)

For Fortran 90, the types supported are scalars and pointers to 1-, 2-, and 3-dimensional integer, single-
precision, and double-precision arrays. For other types of variables (such as a function pointer), one can
register using one of the following two functions.

Fortran: SUBROUTINE COM_SET_EXTERNAL(ANAME, PANEID, VAR)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
EXTERNAL VAR

Fortran: SUBROUTINE COM_SET_EXTERNAL_CONST(ANAME, PANEID, VAR)

One can obtain a pointer set by COM_set_array_const or COM_SET_EXTERNAL only through
COM_get_array_const.

Registration of Bounds A user can register the lower and upper bounds of a specific attribute. One can
register two sets of bounds: one set of hard bounds, which specifies the universal limits that the dataset must
satisfy at all times and whose violation would result in runtime errors; the second set corresponds to soft
bounds, whose violations would result in printing of warning messages at runtime.

C++: COM_set_bounds(const std::string aName, int pane_id,
const void *lbnd, const void *ubnd, int is_soft=0)

C: COM_set_bounds(const char *aName, int pane_id,
const void *lbnd, const void *ubnd, int is_soft=0)

Fortran: SUBROUTINE COM_set_bounds(ANAME, PANE_ID, LBND, UBND, IS_SOFT)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
<TYPE>, INTENT(IN) :: LBND, UBND
INTEGER, INTENT(IN), OPTIONAL :: IS_SOFT

17

When pane_id is 0, then the given bounds will be applied to all panes; if it is greater than 0, then they will
be applied to the specific pane with the given pane ID. If the function is called for a vector attribute, then
the bounds apply to the magnitude of the vectors. One can also set the bounds for individual components by
calling the function on the corresponding component attributes (using attribute names “window.i-attribute”).
The fifth argument, is_soft, which is optional with default value 0, specifies whether the bounds are hard
(is_soft==0) or soft (is_soft66=0).

3.2.3 Functions

A window can contain not only data members but also function members. A function is registered into a
window by calling COM_set_function on all owner processes of the window.

C: COM_set_function(const char *fName, void (*faddr)(),
const char* intents, COM_Type types[])

Fortran: SUBROUTINE COM_SET_FUNCTION(FNAME, FADDR, INTENTS, TYPES)
CHARACTER(*), INTENT(IN) :: FNAME, INTENTS
EXTERNAL FADDR
INTEGER, INTENT(IN) :: TYPES

Similar to attribute names, fName has the format of “window.function”. The argument faddr takes the
actual function pointer. For the C interface, to register a function that takes at least one argument (note that
all arguments must be pointers), a user code must cast the pointer to the void (*)() type, which is predefined
as COM_Func_ptr. The argument intents is a character string of length equal to the number of arguments
taken by the registered function, and its ith character indicates whether the ith argument is for input, output,
or both if intentsi is ’i’/’I’, ’o’/’O’, or ’b’/’B’, respectively (see the Optional Arguments paragraph of this
section for more discussion). The argument types is an integer array of length also equal to the number of
arguments, and its ith entry indicates the data type of the ith argument. All arguments of a registered function
must be passed by reference. If a function is expecting an integer pointer/reference for its ith argument, for
example, the ith entry should be either COM_INT (for C/C++) or COM_INTEGER (for Fortran). See
Appendix B for a list of supported data types, and see the Data Type paragraph of this section for notes on
special data types.

Member Function Many functions perform operations in a specific context. In object-oriented programs,
such contexts are typically encapsulated in objects instead of being scattered into global variables as in
traditional programs. Such an object is passed into a function as an argument, and frequently is passed
implicitly by the compiler to allow cleaner interfaces in modern programming languages.

To encourage object-oriented programming and cleaner interfaces of application codes, Roccom supports
the concept of member functions of attributes. A user registers a member function using the interface
COM_set_member_function, which takes an attribute name as an additional argument.

C: COM_set_member_function(const char *fName, void (*faddr)(),
const char* aName, const char* intents, COM_Type types[])

Fortran: SUBROUTINE COM_SET_MEMBER_FUNCTION(FNAME, FADDR,
ANAME,

INTENTS, TYPES)

18

CHARACTER(*), INTENT(IN) :: FNAME, ANAME, INTENTS
EXTERNAL FADDR
INTEGER, INTENT(IN) :: TYPES(:)

The given attribute should encapsulate the context of the registered function. The first entries in intents and
types should specify the intention and data type of this attribute, respectively. When an application code
invokes a registered member function through Roccom, it will not list this attribute in the arguments, but
Roccom will pass it implicitly as the first argument to the function.

In addition, Roccom also provides a function for registering C++ member functions of a class, which must
be a derived class of COM_Object. An object of a derived class of COM_Object, especially those with
virtual functions, must be registered and retrieved using COM_set_object() and COM_get_object(),
which takes the same arguments as COM_set_array() and COM_get_array(). The member functions
are registered using the following interface,

C++: COM_set_member_function(const char *fName, void (COM_Object::*faddr)(),
const char* aName, const char* intents, COM_Type types[])

and must be casted to the void (COM_Object::*faddr)() type, which is predefined asCOM_Member_func_ptr.
For example, a member function func of a class Rocfoo can be casted as

reinterpret_cast<COM_Member_func_ptr>(&Rocfoo:func).

Optional Arguments If a registered function is written in C or C++, the last few arguments can be spec-
ified as optional. Roccom will pass in null pointers for them if the caller omit these arguments. To specify
an argument to be optional, a user should use uppercase letters ’I’, ’O’, or ’B’ instead of ’i’, ’o’, or ’b’ in its
corresponding entry in intents.

Data Types As we noted earlier, all arguments of a registered data must be passed by reference. A primi-
tive data type (such as COM_INT) used in the argument types would indicate that the function is expecting
a pointer or reference to that type. There are three special cases, however. First, if a function is expecting
a character string (vs. a single character), which must be null terminated for C/C++ functions or whose
length must be passed in implicitly for Fortran functions, then the corresponding data type of the argu-
ment must be set to COM_STRING. This data type tells Roccom to adapt the string if necessary (such
as null-terminating the charactering string) to bridge C/C++ and Fortran transparently from users. Second,
if a function is a service utility written in C++ and is expecting a C++ object that contains the description
of an attribute, the corresponding data type of the argument must be set to COM_METADATA. If the
function is expecting the physical address of a window attribute, then the corresponding datatype should
be COM_RAWDATA. In general, two types of arguments should use COM_RAWDATA: the implicit
argument for a member function, and an argument that is a function pointer.

Limitations and Special Notes For language interoperability, a registered function must return no value,
and all its arguments must be passed by reference (i.e., must be pointers/references for C/C++ functions).
Due to technical reasons, Roccom has to impose a limit on the maximum number of the arguments that a
registered function can take, and the limit is currently set to 7, including the implicit arguments passed by
Roccom, i.e., the first argument of member functions and character lengths for Fortran functions. This preset
limit is large enough for most applications, but can be enlarged by changing Roccom’s implementation if
desired. Similar to data attributes, a function can be registered multiple times, but only the address of the
last registration will be used.

19

3.2.4 Example Code

The following is a piece of Fortran code segment that demonstrates the registration of data and functions.

INTEGER :: nn1, ni2, nj2 ! sizes of nodes

INTEGER :: ne1 ! sizes of elements

INTEGER :: types(2), dims(2)

INTEGER, POINTER :: conn1(3,ne1)

DOUBLE PRECISION, POINTER :: coors1(3,nn1), coor2(3,ni2, nj2)

DOUBLE PRECISION, POINTER :: disp1(3,nn1), disp2(3,ni2, nj2)

DOUBLE PRECISION, POINTER :: velo1(ne1,3), velo2(ni2-1, nj2-1,3)

EXTERNAL fluid_update

CALL COM_NEW_WINDOW("fluid", MPI_COMM_WORLD)

! Create a node-centered double-precision dataset

CALL COM_NEW_ATTRIBUTE("fluid.disp", "n", COM_DOUBLE, 3, "m")

! Create a element-centered double-precision dataset

CALL COM_NEW_ATTRIBUTE("fluid.velo", "e", COM_DOUBLE, 3, "m/s")

! Create a pane with ID 11 of a triangular surface mesh

CALL COM_SET_SIZE("fluid.nc", 11, nn1)

CALL COM_SET_ARRAY("fluid.nc", 11, coors1, 3)

CALL COM_SET_SIZE("fluid.:t3:", 11, ne1)

CALL COM_SET_ARRAY("fluid.:t3:", 11, conn1, 3)

! Create a pane with ID 21 of a structured surface mesh

dims(1)=ni2; dims(2)=nj2;

CALL COM_SET_ARRAY_CONST("fluid.:st2:actual", 21, dims)

CALL COM_SET_ARRAY("fluid.nc", 21, coors2, 3)

! Register addresses of data attributes for both panes

CALL COM_SET_ARRAY("fluid.disp", 11, disp1)

CALL COM_SET_ARRAY("fluid.velo", 11, velo1, 1) ! Staggered layout

CALL COM_SET_ARRAY("fluid.disp", 21, disp2)

CALL COM_SET_ARRAY("fluid.velo", 21, velo2, 1) ! Staggered layout

! Register a function that takes two input arguments

type(1)=COM_DOUBLE; type(2)=COM_DOUBLE

CALL COM_SET_FUNCTION("fluid.update", fluid_update, "ii", types)

CALL COM_WINDOW_INIT_DONE("fluid")

......

CALL COM_DELETE_WINDOW("fluid")

20

3.3 Procedure Calls

3.3.1 Attribute and Function Handles

A handle is an integer from which Roccom can obtain the actual data about attributes and functions. A user
can obtain a mutable handle to an attribute using COM_get_attribute_handle, or an immutable handle
using COM_get_attribute_handle_const, which take the same arguments.

C++: int COM_get_attribute_handle(const std::string aName)

C: int COM_get_attribute_handle(const char *aName)

Fortran: FUNCTION COM_GET_ATTRIBUTE_HANDLE(ANAME)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER :: COM_get_attribute_handle

The function can be called on user-defined attributes, or a pre-defined attribute “nc”, “conn”, “pconn”,
“mesh”, “pmesh”, “atts”, and “all”, which refer to nodal coordinates, element connectivity, pane connec-
tivity, mesh data (including coordinates and element connectivity), parallel mesh data (including mesh and
pane connectivity), all field attributes (excluding parallel mesh), and all data attributes, respectively. Note
that it is illegal to call COM_get_attribute_handle on connectivity tables, whose scopes are within
panes instead of within windows.

To obtain a handle to a function, one should use COM_get_function_handle instead, whose prototype
is essentially the same as COM_get_attribute_handle.

If the function or attribute exists, then a positive integer ID will be returned; otherwise, 0 will be returned.
So these functions can be used to detect the existence of a function or attributes. Similarly, one can detect
the existence of a window by calling COM_get_window_handle.

3.3.2 Invocation

To invoke a function registered with Roccom in C or Fortran, a user need to use the following function.

C: COM_call_function(int fHandle, int argc, void *arg1, ...)

Fortran: SUBROUTINE COM_CALL_FUNCTION(FHANDLE, ARGC, ARG1, ...)
INTEGER, INTENT(IN) :: FHANDLE, ARGC
<TYPE> :: ARG1, ...

The first argument is a function handle, and the second attribute is the number of arguments to be passed,
followed by the pointers (or references) to the data values or attribute handles.

For C++, we take advantage of the function overloading feature of the language to provide a cleaner interface
COM_call_function.

C++: COM_call_function(int fHandle, void *arg1, ...)

It does not require passing the number of arguments.

21

3.3.3 Call Tracing

To help debugging application codes, Roccom allows users to trace the procedure calls by setting a nonzero
verbose level.

C: COM_set_verbose(int v)

Fortran: SUBROUTINE COM_SET_VERBOSE(V)
INTEGER, INTENT(IN) :: V

If v is a positive number, then Roccom will print out traces of the calls up to depth (v+1)/2. If v is an odd
number, Roccom will print only the names of the functions if v even, Roccom will also print the data types
and values of the arguments passed to the functions.

3.3.4 High-Level Profiling

Roccom contains a simple profiling tool for timing the execution times of the functions invoked through
Roccom.

C: COM_set_pro�ling(int enable)

Fortran: SUBROUTINE COM_SET_PROFILING(ENABLE)
INTEGER, INTENT(IN) :: ENABLE

If enable is zero, it disables profiling; otherwise, it enables profiling and resets all the counters of the profiler.

In a parallel run, the timing results are typically more accurate if MPI_Barrier is called before and after a
function call, but putting too many barriers may also affect performance. Roccom allows a user to control
where barriers should be placed by the following call.

C: COM_set_pro�ling_barrier(int fHandle, MPI_Comm comm)

Fortran: SUBROUTINE COM_SET_PROFILING_BARRIER(FHANDLE, COMM)
INTEGER, INTENT(IN) :: FHANDLE, COMM

This routine will enable Roccom to call MPI_Barrier on the given communicator before and after the given
function for the processes of the given communicator.

The profiling results can be printed by calling

C: COM_print_pro�le(const char *fname, const char *header)

Fortran: SUBROUTINE COM_PRINT_PROFILE(FNAME, HEADER)
CHARACTER(*), INTENT(IN) :: FNAME, HEADER

This routine will append the header and the timing results to the file with name fname. If fname is NULL
or the empty string, the standard output will be used instead. A typical timing result looks as follows.

22

Function #calls Time(tree) Time(self)

Rocflu.update_solution 100 43.1856 42.8221

Rocfrac.update_solution 100 30.4038 30.3861

RFC.least_squares_transfer 400 0.957599 0.957599

......

Total(top level calls) 74.806

In the output, the Time(tree) indicates the sum of the elapsed wall-clock time during the execution of a
function since the last call to COM_init_pro�ling, and Time(self) subtracts the elapsed time of the calls
made with the function.

3.3.5 Calling System Calls in Fortran

To allow Fortran to execute a shell command using the system call interface of C, Roccom provides the
following COM_CALL_SYSTEM function.

Fortran: FUNCTION COM_CALL_SYSTEM(COMMAND)
CHARACTER(*), INTENT(IN) :: COMMAND

It will execute the command and return the return status of the command after the command has been
completed; if the command fails to execute due to fork failure, then -1 will be returned.

3.3.6 Calling AtExit and Exit Functions In Fortran

A Fortran code can also call the atexit and exit functions of the C standard through Roccom.

Fortran: FUNCTION COM_CALL_ATEXIT(FUNC)
EXTERNAL FUNC

Fortran: FUNCTION COM_CALL_EXIT(IERR)
INTEGER, INTENT(IN) :: IERR

COM_CALL_ATEXIT registers a subroutine to be executed when the program terminates normally. COM_CALL_EXIT
causes the program to end and supplies a status code to the calling environment.

3.4 Advanced Window Management

3.4.1 Memory Management

Sometimes, it is more convenient to let Roccom allocate arrays instead of registering user-allocated arrays.
This approach avoids having to duplicate the data structures of windows and panes in application codes for
multi-block meshes, and is particularly beneficial for implementing complex orchestration modules (such
as Rocman in GEN2.5). Roccom provides the following subroutines for memory allocation.

23

C++: COM_allocate_array(const std::string aName, int paneID=0, void **addr=NULL,
int strd=0, int cap=0)

C: COM_allocate_array(const char *aName, int paneID=0, void **addr=NULL,
int strd=0, int cap=0)

Fortran: SUBROUTINE COM_ALLOCATE_ARRAY(ANAME, PANEID, ADDR,
STRIDE, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE>, POINTER :: ADDR
OPTIONAL :: PANEID, ADDR, STRIDE, CAP

C++: COM_resize_array(const std::string aName, int paneID=0, void **addr=NULL,
int stride=-1, int cap=0)

C: COM_resize_array(const char *aName, int paneID=0, void **addr=NULL,
int stride=-1, int cap=0)

Fortran: SUBROUTINE COM_RESIZE_ARRAY(ANAME, PANEID, ADDR,
STRIDE, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRIDE, CAP
<TYPE>, POINTER :: ADDR
OPTIONAL :: PANEID, ADDR, CAP, STRIDE

These functions take arguments similar to COM_set_array, except that addr is returned passed out in-
stead of passed into the procedure. They allocate memory for a specific attribute in a given pane if paneID
is nonzero or all panes if paneID is zero (the default value). The differences between allocate and resize
are that the latter allocates memory only if the array was not yet initialized, or was previously allocated
by Roccom but the current capacity is increased or the stride is no longer the same. During resize, val-
ues of the old array will be copied automatically to the new array. If strd is -1, which is the default for
COM_resize_array, the current value registered with Roccom (or the number of components if not yet
registered) will be used; if strd is 0, then the number of components of the attribute will be used. If cap is
0, then the larger of the current capacity and the number of items will be used. Note that it is an error to
resize an inherited or user-allocated (i..e, not allocated by Roccom) attribute. For the Fortran interface, only
scalar, 1-D and 2-D pointers are allowed. If a scalar pointer is used, the data itself must be a scalar and the
argument STRD and CAP must not be present. If a 1-D pointer is given, then the size of the array will be
STRD*CAP. If a 2-D pointer is given, then the sizes of the array will be (STRD,CAP) if STRD is no smaller
than the number of components of the attribute (NCOMP), or be (CAP,NCOMP) if STRD is 1.

A user can use the keyword all in the form of “window.all” for aName to have Roccom allocate memory for
all attributes (including the mesh) in a window. The capacity must be no smaller than the size specified by
COM_set_size; if a value smaller than the actual size is passed to COM_resize_array, then the actual
size will be used instead.

Furthermore, using COM_append_array, Roccom provides a function to append a series of values to the
end of an array associated with a pane or window attribute that has no ghost items.

C++: COM_append_array(const std::string aName, int paneID, const void *addr,
int strd, int size)

C: COM_append_array(const char *aName, int paneID, const void *addr,

24

int strd, int size)

Fortran: SUBROUTINE COM_APPEND_ARRAY(ANAME, PANEID, ADDR,
STRD, SIZE)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, STRD, SIZE
<TYPE>, INTENT(IN) :: ADDR

This function is equivalent to calling COM_resize_array to increase the capacity of the array if nec-
essary using the stride currently registered with Roccom, calling COM_set_size to increase the num-
ber of items by size, and then copying data from user buffer addr with a stride strd. This function is
particularly useful for packing a series of values into a big array in Roccom. Note that after calling
COM_append_array, the array in Roccom may have been reallocated if its capacity was increased,
in which case the address previously obtained from Roccom becomes invalid and the user must reobtain the
address by calling COM_get_array.

Allocated memory should be deallocated by calling COM_deallocate_array.

C++: COM_deallocate_array(const std::string aName, int paneID=0)

C: COM_deallocate_array(const char *aName, int paneID=0)

Fortran: SUBROUTINE COM_DEALLOCATE_ARRAY(ANAME, PANEID)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
OPTIONAL :: PANEID

If the deallocation routine is not called, the memory will be freed automatically when the window is de-
stroyed.

3.4.2 Pointer Attributes

Roccom provides two special data types, COM_VOID and COM_F90POINTER. The former means a
void pointer in C or C++, and the latter a Fortran 90 pointer. A F90 pointer is different from C/C++ pointers,
in that it is a structure containing the descriptor of the data that are referenced, and the exact size of the
structure is compiler dependent and may vary with the types that it references. These two data types are
particularly useful in conjunction with COM_allocate_array to store pointers to some objects, which
allows a module to eliminate global variables completely, so that they can take advantage of Charm++.

When Roccom allocates a F90 pointer, it allocates a piece of memory that is large enough to hold any type of
F90 pointers. A F90 application code can copy a pointer to or from Roccom usingCOM_SET_POINTER
and COM_GET_POINTER, respectively.

Fortran: SUBROUTINE COM_SET_POINTER(ATTR, PTR, ASSO)
CHARACTER(*), INTENT(IN) :: ATTR
<TYPE>, POINTER :: PTR
EXTERNAL ASSO

Fortran: SUBROUTINE COM_GET_POINTER(ATTR, PTR, ASSO)
CHARACTER(*), INTENT(IN) :: ATTR
<TYPE>, POINTER :: PTR
EXTERNAL ASSO

25

These functions are particularly useful for registering the context variable of member functions, similar to
registering COM_Object associated with the C++ member functions. For that reason, Roccom also provides
two F90 interface functions, COM_set_object and COM_get_object, which are essentially aliases of
COM_set_pointer and COM_get_pointer. The argument ASSO is a user-defined subroutine which
looks like follows.

SUBROUTINE ASSOCIATE_POINTER(attr, ptr)

<TYPE>, POINTER :: attr

<TYPE>, POINTER :: ptr

ptr => attr

END SUBROUTINE ASSOCIATE_POINTER

Because the arguments of COM_set_pointer and COM_get_pointer are pointers whose types are
unknown to Roccom, the user must explicitly define the prototypes of these functions in the application
codes using the specific data types.

3.4.3 Inheritance

Inheritance is a key concept of object-oriented programming. In GEN2.5, inheritance is very useful under
a few situations. First, the orchestration module (Rocman) sometimes needs to create intermediate data
associated with a window owned by another module. Inheritance allows Rocman to extend the window
by adding additional data attributes, or altering the definitions of some of the attributes. Second, a module
(e.g., Rocburn) may need to operate on a subset of the mesh of another module (e.g., Rocflo or Rocflu).
Roccom facilitates such special needs by allowing a window to inherit (a subset of) another window without
incurring the memory overhead of data duplication. Furthermore, Rocman sometimes needs to split user-
defined windows into separate windows based on boundary-condition types, so that they can be handled
differently (such as written into separate files for visualization).

Roccom supports two types of inheritance: using and cloning. For the former, Roccom does not duplicate
the dataset; for the latter, Roccom does. For each type, it allows inheriting the mesh from a parent window
to a child window in two modes. First, the mesh can be inherited as a whole. Second, only a subset of
panes that satisfy a certain criterion are inherited. The following two subroutines support these two modes
of use-inheritance, respectively.

C++: COM_use_attribute(const std::string wName_to, const std::string wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

C: COM_use_attribute(const char *wName_to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_USE_ATTRIBUTE(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME

26

INTEGER, INTENT(IN) :: VAL, WITH_GHOST
OPTIONAL WITH_GHOST, ANAME, VAL

C++: COM_clone_attribute(const std::string wName_to, const std::string wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

C: COM_clone_attribute(const char *wName_to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_CLONE_ATTRIBUTE(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME
INTEGER, INTENT(IN) :: VAL, WITH_GHOST
OPTIONAL WITH_GHOST, ANAME, VAL

In the arguments, the wName are window names and the aName are attribute names. The argument
with_ghost indicates whether the ghost nodes and elements should be inherited. The next argument is
a panel attribute of integer type, and only the panes whose corresponding values of the attribute equal to
the argument val will be inherited. In practice, aName is most likely to correspond to a boundary-condition
type for panes, and val correspond to a boundary condition ID. Note that if aName is empty (i.e., either a
NULL pointer or an empty string) and val is nonzero, then condition is considered to be “paneID==val”, so
that only the pane whose ID is equal to val is inherited.

If a child window needs to contain panes of more than one boundary-condition types, then a user can call
COM_use_attribute multiple times with different boundary condition ID. Note that in both routines, the
child window does not duplicate memory space for the mesh but inherit the memory addresses of the parent
window. If a pane in the parent window does not exist in the target window, a new pane is inserted into the
derived window if the attribute being inherited contains the element connectivities (i.e,. “conn”, “mesh”, or
“all”), or the pane is ignored for other types of elements. If the attribute being inherited already exists in the
child window, then the data type and layout of the new attribute must be the same as the existing one, and
Roccom will overwrite other information of the existing attribute with the new attribute. Note that one must
not delete or redefine an attribute that is being used by another window.

A related function of inheritance is COM_copy_attribute, which copies data from one attribute onto
another.

C++: COM_copy_attribute(const std::string wName_to, const std::string wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

C++: COM_copy_attribute(const int wName_to, const int wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

C: COM_copy_attribute(const char *wName_to, const char *wName_from,
int with_ghost=1, const char *aName=NULL, int val=0)

Fortran: SUBROUTINE COM_COPY_ATTRIBUTE(WNAME_TO, WNAME_FROM,
WITH_GHOST,ANAME, VAL)
CHARACTER(*), INTENT(IN) :: WNAME_TO, WNAME_FROM, ANAME
INTEGER, INTENT(IN) :: VAL, WITH_GHOST
OPTIONAL WITH_GHOST, ANAME, VAL

27

3.4.4 Deletion of Entities

When a window is not needed anymore, it should be destroyed by calling COM_delete_window, which
takes the window name as its only argument.

C: COM_delete_window(const std::string wName)

C: COM_delete_window(const char *wName)

Fortran: SUBROUTINE COM_DELETE_WINDOW(WNAME)
CHARACTER(*), INTENT(IN) :: WNAME

This subroutine allows Roccom to clean up its internal data created for a window. It also automatically
deallocates all the datasets allocated using COM_allocate_array or COM_resize_array but not yet
deallocated.

Furthermore, one can delete a single pane from a window by calling COM_delete_pane, which takes the
window name and a pane ID as its arguments.

C++: COM_delete_pane(const std::string wName, int pandID)

C: COM_delete_pane(const char *wName, int pandID)

Fortran: SUBROUTINE COM_DELETE_PANE(WNAME, PANEID)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(IN) :: PANEID

One can also delete an existing attribute (except for predefined attributes) by callingCOM_delete_attribute.

C++: COM_delete_attribute(const std::string aName)

C: COM_delete_attribute(const char *aName)

Fortran: SUBROUTINE COM_DELETE_ATTRIBUTE(ANAME)
CHARACTER(*), INTENT(IN) :: ANAME

The only keyword that can be used with COM_delete_attribute is “atts”, which will removed all user-
defined attributes and leave only the mesh. Note that after deleting some panes or attributes, one must call
COM_window_init_done on all processes collectively before using the window. In addition, deleting a
window, pane, or attribute may invalidate attribute and function handles and the structure of inheritance, so
they should be used with extreme care.

3.5 Information Retrieval

3.5.1 Window and panes

Typically, data registered by application modules need to be accessed only by service modules through
the C++ interface described in the Developers Guide. However, some application modules (e.g., Rocburn)
need to obtain the information about a window created by another module (e.g., Rocflo/Rocflu). Roccom
3 provides functions to support information retrieval, under the assumption that the caller knows about the
attribute names and base data types of the attributes.

28

C: COM_get_communicator(const char *wName, MPI_Comm *comm)

Fortran: SUBROUTINE COM_GET_COMMUNICATOR(WNAME, COMM)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: COMM

This subroutine obtains the MPI communicator of a window.

The following subroutine obtains the IDs of the panes in a window local to a process:

C/C++: COM_get_panes(const char *wName, int *np, int **pane_ids=NULL,
int rank=myrank)

C++: COM_get_panes(const char *wName, vector<int> &pane_ids, int rank=myrank)

Fortran: SUBROUTINE COM_GET_PANES(WNAME, NP, PANE_IDS, RANK)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: NP
OPTIONAL, INTEGER, POINTER :: PANE_IDS(:)
OPTIONAL, INTEGER, INTENT(IN) :: RANK

It sets the number of panes to np and loads an array of IDs into pane_ids, whose memory is allocated by
Roccom and should be deallocated by calling COM_free_bu�er (except for the vector interface). The
rank is in the scope of the MPI communicator of the window. If the rank is not present or is -2, then
the default value is that of the current process. If the rank is -1, then the function will load the panes
on all the processes within the communicator. Note that this function can only be called after calling
COM_window_init_done.

C/C++: COM_get_attributes(const char *wName, int *na, char **names)

C++: COM_get_attributes(const char *wName, int *na, string &names)

Fortran: SUBROUTINE COM_GET_ATTRIBUTES(WNAME, NA, NAMES)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(OUT) :: NA
CHARACTER, POINTER :: NAMES(:)

It sets na to be the number of attributes in the window and allocates a space-delimited string names to
store the names of the attributes. Except for the string interface, names must be deallocated by calling
COM_free_bu�er (see below) after use.

C/C++: COM_get_connectivities(const char *wName, const int *pid,
int *nc, char **names)

C++: COM_get_connectivities(const char *wName, const int *pid,
int *nc, string &names)

Fortran: SUBROUTINE COM_GET_CONNECTIVITIES(WNAME, PID, NC, NAMES)
CHARACTER(*), INTENT(IN) :: WNAME
INTEGER, INTENT(IN) :: PID
INTEGER, INTENT(OUT) :: NC
CHARACTER, POINTER :: NAMES(:)

29

It sets nc to be the number of connectivity tables in a pane and allocates a space-delimited string names to
store the names of the connectivity tables. Again, namesmust be deallocated by callingCOM_free_bu�er
(except for the string interface) after use.

C: COM_free_bu�er(char (or int) **buf)

Fortran: SUBROUTINE COM_FREE_BUFFER(BUF)
CHARACTER (or INTEGER), POINTER :: BUF(:)

3.5.2 Attribute and Connectivity

One can obtain the information of an attribute by calling COM_get_attribute, whose arguments corre-
spond to those of COM_new_attribute.

C: COM_get_attribute(const char *aName, char *loc, COM_Type *type,
int *ncomp, char *unit, int n)

C++: COM_get_attribute(const char *aName, char *loc, COM_Type *type,
int *ncomp, string *unit)

Fortran: SUBROUTINE COM_GET_ATTRIBUTE(ANAME, LOC, TYPE,
NCOMP, UNIT)
CHARACTER(*), INTENT(IN) :: ANAME
CHARACTER*1, INTENT(OUT) :: LOC
INTEGER, INTENT(OUT) :: TYPE, NCOMP
CHARACTER(*) :: UNIT

One can also use COM_get_attribute on a connectivity, which will set ncomp to the number of nodes
per element for that particular type of element.

One can also check the status of a window, a pane, an attribute, or a connectivity table by calling the function
COM_get_status.

C: int COM_get_status(const char *aName, int paneID)

Fortran: FUNCTION COM_GET_STATUS(ANAME, PANEID)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
INTEGER :: COM_GET_STATUS

If aName is a window name (i.e., containing no ’.’) and paneID is 0, then it checks whether the window
exists, and returns 0 if so and -1 otherwise. If aName is a window name and paneID is nonzero, then it
checks whether the given pane exist in the window, and returns 0 if so and -1 otherwise. If aName is in the
form of “window.attribute”, then it checks the status of the given attribute, and returns one of the following
values:

• -1: does not exist;

• 0: exists but not initialized;

30

• 1: set by the user using set_array or set_object;

• 2: set by the user using set_array_const;

• 3: use from another attribute;

• 4: allocated using resize_array, allocate_array, or cloned from another attribute.

If an attribute uses another, one can get the full name (window.attribute) of its parent attribute using the
following interface:

C/C++: COM_get_parent(const char *waName, int paneid, char **parent)

C++: COM_get_parent(const char *waName, int paneid, string &parent)

Fortran: SUBROUTINE COM_GET_PARENT(WANAME, PANEID, PARENT)
CHARACTER(*), INTENT(IN) :: WANAME
INTEGER, INTENT(IN) :: PANEID
CHARACTER, POINTER :: PARENT(:)

The storage for the parent name will be allocated by Roccom and must be freed using COM_free_bu�er
after usage, except for the C++ interface.

3.5.3 Sizes

The following function can be used to obtain the sizes of an attribute. Note that the size corresponds to the
total size (including ghost items).

C++: COM_get_size(const std::string aName, int pane_id, int *size, int *ng=NULL)

C: COM_get_size(const char *aName, int pane_id, int *size, int *ng=NULL)

Fortran: SUBROUTINE COM_get_size(ANAME, PANE_ID, SIZE, NG)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
INTEGER, INTENT(OUT) :: SIZE, NG
OPTIONAL :: NG

Note that for structured meshes, its dimensions should be obtained usingCOM_get_array_const instead
of COM_get_size.

3.5.4 Arrays

One can obtain an array by either obtaining a pointer to the array, or copying the data into a user provided
buffer. The first mode is provided by COM_get_array and COM_get_array_const, which can be
used to obtain a pointer to an array registered or allocated in Roccom.

31

C: COM_get_array(const char *aName, int paneID, void **addr,
int *strd=NULL, int *cap=NULL)

Fortran: SUBROUTINE COM_GET_ARRAY(ANAME, PANEID, ADDR,
STRD, CAP)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID
<TYPE>, POINTER :: ADDR
INTEGER, INTENT(OUT) :: STRD, CAP
OPTIONAL :: STRD, CAP

C: COM_get_array_const(...)

Fortran: SUBROUTINE COM_GET_ARRAY_CONST(...)

Note that if the attribute-name and the pane-ID do not identify a unique array, then a NULL pointer will be
returned. Furthermore, if an array was registered with COM_set_array_const, then it can be retrieved
only by COM_get_array_const. For the Fortran interface, only scalar, 1-D and 2-D pointers are al-
lowed. If a scalar pointer is used, the data itself must be a scalar and the argument STRD and CAP must not
be present. If a 1-D pointer is given, then the size of the array will be STRD*CAP. If a 2-D pointer is given,
then the sizes of the array will be (STRD,CAP) if STRD is no smaller than the number of components of
the attribute (NCOMP), or be (CAP,NCOMP) if STRD is 1.

The second mode is provided by COM_copy_array.

C: COM_copy_array(const char *aName, int paneID, void *val, int v_strd=0,
int v_size=0, int o�set=0)

Fortran: SUBROUTINE COM_GET_ARRAY(ANAME, PANEID, VAL, V_STRD,
V_SIZE, OFFSET)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANEID, V_STRD, V_SIZE, OFFSET
<TYPE>, POINTER :: VAL
OPTIONAL :: V_STRD, V_SIZE, OFFSET

It copies up to v_size items of the attribute starting from the o�set-th item of the attribute into the given
buffer with stride v_strd. If v_strd=0 (the default value), then the number of components will be used as
the stride. If v_size=0 (the default value), then the number of items will be used as the size. The default
value of o�set is 0. Note that a runtime error occurs if o�set is negative or o�set+v_size is larger than the
actual capacity of the attribute.

3.5.5 Bounds

The lower and upper bounds of a specific attribute can be obtained by calling COM_get_bounds.

C: COM_get_bounds(const char *aName, int pane_id,
void *lbnd, void *ubnd, int is_soft=0)

Fortran: SUBROUTINE COM_get_bounds(ANAME, PANE_ID, LBND, UBND, IS_HARD)
CHARACTER(*), INTENT(IN) :: ANAME

32

INTEGER, INTENT(IN) :: PANE_ID
<TYPE>, INTENT(OUT) :: LBND, UBND
INTEGER, INTENT(IN), OPTIONAL :: IS_SOFT

Furthermore, Roccom also provides functions to check the attributes against pre-set bounds.

C: int COM_check_bounds(const char *aName, int pane_id, int nprint=0)

Fortran: INTEGER FUNCTION COM_check_bounds(ANAME, PANE_ID, NPRINT)
CHARACTER(*), INTENT(IN) :: ANAME
INTEGER, INTENT(IN) :: PANE_ID
INTEGER, INTENT(IN), OPTIONAL :: NPRINT

If pane_id is 0, then the bounds will be checked on all panes; otherwise, they will be checked only on
the pane with the given pane ID. If there are only soft-bound violations or no violations, then the function
returns the number of soft-bound violations. If the verbose level of Roccom is 0, then no information will
be printed. If the verbose level is nonzero and nprint is 0, then a summary of soft-bound violations will be
printed. If nprint is greater than 0, then the first few (where the number to be printed is nprint) soft-bound
violations for each attribute in each individual pane will be printed. A violation of hard bounds will terminate
the execution of the code, and a summary of hard-bound violations will be printed upon termination, along
with information about any soft-bound violations if the verbose level is nonzero.

4 Makefiles for Roccom Applications

Writing makefiles is not a trivial task for complex codes. Besides defining all the dependencies between files,
the makefile must specify the correct directory for Roccom header files, directories of the additional header
files or libraries required by service utilities, and platform-dependent compiler options. Mixing C/C++ and
Fortran codes together further complicates the makefiles.

These issues are apparently faced by all application codes. To maximize the reuse of makefiles, we provide
a file Make�le. common in Roccom’s root directory. (Thanks to Orion S. Lawlor for initiating the reorga-
nization of makefiles.) The makefile of an application should include this common makefile and typically
looks as follows.

Gengbin Zheng further extended the makefiles to use autoconfig which allows Rocstar to be built for multiple
versions with one code base.

Makefile file RocX

COMHOME = ../Roccom include

$(COMHOME)/Makefile.common

VPATH = src

LIBX = libX.a

CPPFLAGS += -Iinclude

33

OBJS = foo.o

#================== Actions =================

all: $(LIBX)

$(LIBX): $(OBJS)

$(AR) $(ARFLAGS) $@ $?

These makefiles must be invoked using gmake because the common makefile uses some advanced features
that are gmake specific.

5 Sample Codes

A few sample application codes of Roccom are provided in the test subdirectories of a few service modules.
In particular, both C++ and Fortran 90 sample codes are available in the Roccom/Rochdf/test subdirectory.
These codes demonstrate most functionality described in this document, including how to create windows,
register data attributes and functions, duplicate windows using inheritance, allocate/deallocate memory in
Roccom, and make procedure calls. The makefile in Roccom/Rochdf is also a good example for typical
application or service modules. Similar sample codes are also available in Roccom/Rocblas/test and
Roccom/Rocmap/test.

A Guide for Migrating to Roccom 3.x

This section provides a guide for mapping Roccom 2.x’s interface to Roccom 3.x.

A.1 Mesh data

A.1.1 Definition of mesh unit

Old: COM_init_mesh(“win.unit”, 0, “meter”, 5)

New: COM_new_attribute(“win.nc”, ’n’, COM_DOUBLE,3, “meter”)

A.1.2 Setting coordinates

Old: COM_init_mesh(“win.nc”, pane_id, coors, num_nodes [, num_ghost_nodes])

New: COM_set_size(“win.nc”, pane_id, num_nodes [, num_ghost_nodes])
COM_set_array(“win.nc”, pane_id, coors [, stride, capacity])

Old: COM_init_mesh(“win.n-c”, pane_id, coors, num_nodes [, num_ghost_nodes]) // “n-c”
indicates staggered data layout.

34

New: COM_set_size(“win.nc”, pane_id, num_nodes [, num_ghost_nodes])
COM_set_array(“win.nc”, pane_id, coors, 1 [, capacity]) // stride of 1 indicates the data

layout.

A.1.3 Element connectivity

Old: COM_init_mesh(“win.t3”, pane_id, elems, num_elems [, num_ghost_elems])

New: COM_set_size(“win.:t3:aname”, pane_id, num_elems [, num_ghost_elems])
COM_set_array(“win.:t3:aname”, pane_id, elems [, stride, capacity])

Old: COM_init_mesh(“win.t-3”, pane_id, elems, num_elems [, num_ghost_elems])

New: COM_set_size(“win.:t3:aname”, pane_id, num_elems [, num_ghost_elems])
COM_set_array(“win.:t3:aname”, pane_id, elems, 1 [, capacity])

A.1.4 Structured Mesh

Old: COM_init_mesh(“win.st”, pane_id, sizes, 2, ghost_layers)

New: COM_set_size(“win.aname”, 2, ghost_layers)
COM_set_array_const(“win.:st2:aname”, pane_id, sizes)

For three dimensional meshes, the attribute name is “:st3:aname”.

A.1.5 Inheritance of Mesh

Old: COM_use_mesh(“win”, “parent”)

New: COM_use_attribute(“win.mesh”, “parent.mesh”)

Old: COM_clone_mesh(“win”, “parent”)

New: COM_clone_attribute(“win.mesh”, “parent.mesh”)

Old: COM_use_mesh_sub(“win”, “parent”, with_ghost, “parent.cond”, val)

New: COM_use_attribute(“win.mesh”, “parent.mesh”, with_ghost, “parent.cond”, val)

Old: COM_clone_mesh_sub(“win”, “parent”, with_ghost, “parent.cond”, val)

New: COM_clone_attribute(“win.mesh”, “parent.mesh”, with_ghost, “parent.cond”, val)

A.2 Data Attributes

A.2.1 Nodal and Elemental Attributes

Old: COM_init_attribute(“win.aname”, pane_id, addr)

New: COM_set_array(“win.aname”, pane_id, addr)

Old: COM_init_attribute_strided(“win.aname”, pane_id, addr, strd)

New: COM_set_array(“win.aname”, pane_id, addr, strd)

35

A.2.2 External Fortran Symbols

Old: COM_INIT_ATTRIBUTE(“win.func”, 0, subroutine_name)

New: COM_SET_EXTERNAL(“win.func”, 0, subroutine_name)

A.2.3 Memory Allocation

Old: COM_allocate_attribute(“win.aname”, pane_id)

New: COM_allocate_array(“win.aname”, pane_id), or
COM_resize_array(“win.aname”, pane_id)

A.2.4 Information Retrieval

Old: COM_get_attribute_addr(“win.aname”, pane_id, addr)

New: COM_get_array(“win.aname”, pane_id, addr)

Old: COM_get_window_npanes(“win”, npanes)

New: COM_get_panes(“win”, npanes)

Old: COM_get_window_nnodes(“win”, npanes, nnodes_allpanes)

New: COM_get_size(“win.nc”, pane_id, nnodes) [Loop through all panes]

Old: COM_get_window_nelems(“win”, npanes, nelems_allpanes)

New: COM_get_size(“win.conn”, pid, nelems) [Loop through all panes]

A.3 Name Changes

The following names were changed:

COM_create_window –> COM_new_window

COM_init_function –> COM_set_function

COM_init_member_function –> COM_set_member_function.

COM_init_profiling –> COM_set_profiling

COM_init_profiling_barrier –> COM_set_profiling_barrier

COM_get_attribute_info –> COM_get_attribute

COM_get_window_panes–>COM_get_panes

A.4 Changes Developers Interfaces

Changed Attribute::size() to Attribute::size_of_components().

Structured meshes also have a Connectivity object.

36

B Roccom Data types

Roccom defines the following primitive C data types:

COM_CHAR, COM_UNSIGNED_CHAR, COM_BYTE, COM_SHORT, COM_UNSIGNED_SHORT,
COM_INT, COM_UNSIGNED, COM_LONG, COM_UNSIGNED_LONG, COM_FLOAT, COM_DOUBLE,
COM_LONG_DOUBLE, COM_LONG_LONG_INT.

It also defines the following primitive Fortran data types

COM_CHARACTER, COM_LOGICAL, COM_INTEGER, COM_REAL, COM_DOUBLE_PRECISION,
COM_COMPLEX, COM_DOUBLE_COMPLEX.

The following C and Fortran data types are equivalent. In a heterogeneous application that requires interop-
erability of C/C++ and Fortran, it is advantageous to use only these primitive data types.

COM_CHAR ≈ COM_CHARACTER
COM_INT ≈ COM_INTEGER
COM_FLOAT ≈ COM_REAL
COM_DOUBLE ≈ COM_DOUBLE_PRECISION

There are also four special data types:

COM_STRING, COM_RAWDATA, COM_METADATA, COM_VOID, COM_F90POINTER.

37

Index
adaptivity, 2
API, 2, 8, 10
argument

implicit, 19
intention, 18, 19

’B’, 19
’I’, 19
’O’, 19
’b’, 19
’i’, 19
’o’, 19

optional, 13, 16, 24, 25, 27, 29, 31, 32
array, 16

allocate, 3, 6, 23, 24, 28, 29, 31
capacity, 3, 24
convention, 17
deallocate, 3, 25, 28–30
inquiring, 31
registration, 17, 23
resize, 3, 24
stride, 5, 17, 24, 34, 35

assumption, 28
attribute, 3–8, 14, 16, 24, 26, 28, 33–35

aggregate, 5, 6
bounds, 3, 18

checking, 33
hard, 17
inquiring, 32
setting, 17
soft, 17
vector components, 18
violation, 33

elemental, 5
existence, 21
initialization, 9, 16
inquiring, 29
keyword, 3, 14, 21, 24, 28
location, 14
mesh, 5, 7, 14, 21
nodal, 16
pane, 5, 14
parallel mesh, 21
redefine, 3, 14
registration

function pointer, 17

reinitiaize, 13
size, 3

registration, 16
unit, 14, 30
user-defined, 6, 13, 14, 16, 26
window, 6, 14, 16, 17, 19

boundary condition, 5

case sensitive, 10
cells, 5
CGNS, 16
COM_abort, 12
COM_allocate_array, 24, 25, 28
COM_allocate_attribute (obsolete), 36
COM_append_array, 24, 25
COM_call_atexit (Fortran), 23
COM_call_exit (Fortran), 23
COM_call_function, 21
COM_call_system (Fortran), 23
COM_check_bounds, 33
COM_clone_attribute, 27
COM_clone_mesh (obsolete), 35
COM_clone_mesh_sub (obsolete), 35
COM_copy_array, 32
COM_copy_attribute, 27
COM_create_window (obsolete), 36
COM_deallocate_array, 25
COM_delete_attribute, 28
COM_delete_pane, 28
COM_delete_window, 28
COM_EXTERN_MODULE (C/C++), 12
COM_finalize, 11
COM_free_buffer, 29–31
COM_Func_ptr, 18
COM_get_array, 31, 32
COM_get_array_const, 3, 17, 31, 32
COM_get_attribute, 30, 36
COM_get_attribute_addr (obsolete), 36
COM_get_attribute_handle, 21
COM_get_attribute_handle_const, 21
COM_get_attribute_info (obsolete), 36
COM_get_attributes, 3, 29
COM_get_bounds, 32
COM_get_communicator, 13, 29

38

COM_get_connectivities, 3, 29
COM_get_error_code, 10
COM_get_function_handle, 21
COM_get_object, 19, 26
COM_get_panes, 3, 29, 36
COM_get_parent, 31
COM_get_pointer, 25, 26
COM_get_size, 31, 36
COM_get_status, 30
COM_get_window_handle, 21
COM_get_window_nelems (obsolete), 36
COM_get_window_nnodes (obsolete), 36
COM_get_window_npanes (obsolete), 36
COM_get_window_panes (obsolete), 36
COM_init, 11, 12
COM_init_attribute (obsolete), 35, 36
COM_init_attribute_strided (obsolete), 35
COM_init_function (obsolete), 36
COM_init_member_function (obsolete), 36
COM_init_mesh (obsolete), 34, 35
COM_init_profiling, 23
COM_init_profiling (obsolete), 36
COM_init_profiling_barrier (obsolete), 36
COM_initialized, 11, 12
COM_load_module, 12
COM_LOAD_MODULE_... (C/C++), 12
COM_Member_func_ptr, 19
COM_new_attribute, 14, 34
COM_new_window, 13, 36
COM_Object, 19
COM_print_profile, 22
COM_resize_array, 24, 28
COM_set_array, 3, 16, 17, 24
COM_set_array_const, 3, 16, 17, 32
COM_set_bounds, 17
COM_set_external, 17
COM_set_external_const, 17
COM_set_function, 18, 36
COM_set_member_function, 18, 19, 36
COM_set_object, 19, 26
COM_set_pointer, 25, 26
COM_set_profiling, 22, 36
COM_set_profiling_barrier, 22, 36
COM_set_size, 3, 16, 17, 24
COM_set_verbose, 11, 22
COM_Type, 14, 18, 19, 30
COM_unload_module, 12
COM_UNLOAD_MODULE_... (C/C++), 12

COM_use_attribute, 26, 27
COM_use_mesh (obsolete), 35
COM_use_mesh_sub (obsolete), 35
COM_window_init_done, 13, 14, 28
command-line, 9
command-line options

-com-home, 11
-com-mpi, 11
-com-v, 11

compiler, 6, 18, 25, 33
component, 4
component-based, 4
constant, 14
coupling, 2
CSAR, 1

data integrity, 3, 7, 8, 17
authorization, 4
coherence, 7
dangling, 7
immutable, 3, 5, 7, 8, 21
mutable, 5, 8, 21
persistency, 4, 7, 8
read-only, 17

data type
COM_BYTE, 37
COM_CHAR, 37
COM_CHARACTER, 37
COM_COMPLEX, 37
COM_DOUBLE, 37
COM_DOUBLE_COMPLEX, 37
COM_DOUBLE_PRECISION, 37
COM_F90POINTER, 25, 37
COM_FLOAT, 37
COM_INT, 18, 19, 37
COM_INTEGER, 18, 37
COM_LOGICAL, 37
COM_LONG, 37
COM_LONG_LONG_INT, 37
COM_METADATA, 19, 37
COM_RAWDATA, 19, 37
COM_REAL, 37
COM_SHORT, 37
COM_STRING, 19, 37
COM_UNSIGNED, 37
COM_UNSIGNED_CHAR, 37
COM_UNSIGNED_LONG, 37
COM_UNSIGNED_SHORT, 37

39

COM_VOID, 25, 37
directory, 33, 34

element type, 15
bar, 15
brick, 15
pentahedron, 15
prism, 15
pyramid, 15
quadrilateral, 15
tetrahedron, 15
triangle, 15
wedge, 15

environment variable
ROCCOM_HOME, 11
ROCSTAR_HOME, 11

error handling, 10
example, 5, 20
external, 17–19, 25

field, 5
framework, 1, 2, 4, 8, 9, 12
function, 4

existence, 21
initialization, 9
invocation, 6, 8, 9, 21
member function, 3, 6, 8, 18, 19
registration, 6, 18, 19

functionality, 34

handle, 3, 4, 8
attribute, 14, 21, 28
function, 21, 28

header file
roccom.h, 10
roccomf90.h, 10

incompatiblility, 6
inheritance, 3, 4, 6, 7, 14, 24, 26–28, 34

clone, 7, 26
copy, 7, 25
duplicate, 26, 27, 34
pane connectivity, 15
subwindow, 6

initialization, 3, 11
input, 6, 18
integration, 1, 4
inter-module, 4, 6, 9
interaction, 10

interface, 4, 6, 8, 10, 18, 36
interoperability, 1, 8, 19, 37

library, 3, 33
dynamic, 12
name, 12

limitation, 19

makefile, 33, 34
dependency, 33
gmake, 34

memory
allocate, 36
contiguous, 5
debugging, 9
F90 pointer, 25
free, 25
malloc, 9
staggered, 5, 34
user-allocated, 23, 24
user-registered, 8

mesh
connectivity, 3, 5, 8, 14–17, 21, 27, 30, 35, 36

:B20, 15
:B8, 15
:H8, 15
:P14, 15
:P15, 15
:P18, 15
:P5, 15
:P6, 15
:T10, 15
:T4, 15
:b2, 15
:q4, 15
:q8, 15
:q9, 15
:st1, 15
:st2, 15
:st3, 15, 35
:t3, 15
:t6, 15
inquiring, 30
registration, 16

coordinates, 5, 14, 21, 34
dimension, 5
ghost, 5, 16, 27, 31
mixed, 3, 5, 8

40

multi-block, 5, 23
pane connectivity, 5, 14, 21

format, 15
structured, 5, 15, 16, 31, 35, 36

dimensions, 15, 31
unstructured, 5

migrating, 34
mixed-language, 6
mixing, 33
modlule

loading, 3, 12
unload, 3

module
categorization, 1
finalization, 11
initialization, 11
load, 9
requirements, 9
unloading, 12

MPI, 2, 13, 29
communicator, 13, 22, 29
MPI_Barrier, 22
MPI_Comm, 13, 22, 29

multi-thread, 2

object oriented, 4, 6, 18, 26
class, 8
data member, 13
encapsulation, 4
function, 13
polymorphism, 4

runtime, 6
public, 2, 4, 13

pane, 2, 4, 5, 8, 16
deletion, 28
ID, 5, 17
inquiring, 29

pane connectivity, 14
inheritance, 15

PAPI, 9
parallel, 1, 2, 4–6, 22
platform-dependent, 33
plug-and-play, 2
predictor-corrector, 9
profiling, 4, 9, 22

barrier, 22
elapsed, 23

output, 22
wall-clock, 23

registration, 2–7, 13, 14, 16, 17, 19, 34
reinitializion, 4
restart, 9
Rocman, 2, 9, 23, 26
Rocstar, 1, 2, 4, 9
runtime, 4, 8
runtime system, 1, 2, 8, 9, 11

scalar, 17
shutdown, 11
STATIC_LINK, 13
string

null termination, 8, 10, 19

tracing, 4, 9, 11, 22
two-dimensional, 5

uppercase, 19

window, 3, 4, 6–8, 13, 34
creation, 13
data member, 4
deletion, 9, 28
existence, 21
initialization, 9
inquiring, 6, 8, 28
split, 26

41

